関数 $f(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$ の導関数を求めよ。解析学導関数微分関数の微分ルート指数2025/7/51. 問題の内容関数 f(x)=x−1xf(x) = \sqrt{x} - \frac{1}{\sqrt{x}}f(x)=x−x1 の導関数を求めよ。2. 解き方の手順まず、f(x)f(x)f(x)を指数を用いて書き換えます。f(x)=x−1x=x12−x−12f(x) = \sqrt{x} - \frac{1}{\sqrt{x}} = x^{\frac{1}{2}} - x^{-\frac{1}{2}}f(x)=x−x1=x21−x−21次に、導関数の公式 ddxxn=nxn−1\frac{d}{dx} x^n = nx^{n-1}dxdxn=nxn−1 を用いて、f(x)f(x)f(x) の導関数を求めます。ddxx12=12x12−1=12x−12\frac{d}{dx} x^{\frac{1}{2}} = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}}dxdx21=21x21−1=21x−21ddxx−12=−12x−12−1=−12x−32\frac{d}{dx} x^{-\frac{1}{2}} = -\frac{1}{2}x^{-\frac{1}{2}-1} = -\frac{1}{2}x^{-\frac{3}{2}}dxdx−21=−21x−21−1=−21x−23したがって、f′(x)=ddx(x12−x−12)=12x−12−(−12x−32)=12x−12+12x−32f'(x) = \frac{d}{dx} (x^{\frac{1}{2}} - x^{-\frac{1}{2}}) = \frac{1}{2}x^{-\frac{1}{2}} - (-\frac{1}{2}x^{-\frac{3}{2}}) = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}}f′(x)=dxd(x21−x−21)=21x−21−(−21x−23)=21x−21+21x−23f′(x)=12x−12+12x−32=12x+12xx=12x(1+1x)=12x(x+1x)=x+12xxf'(x) = \frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{-\frac{3}{2}} = \frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} = \frac{1}{2\sqrt{x}}(1 + \frac{1}{x}) = \frac{1}{2\sqrt{x}}(\frac{x+1}{x}) = \frac{x+1}{2x\sqrt{x}}f′(x)=21x−21+21x−23=2x1+2xx1=2x1(1+x1)=2x1(xx+1)=2xxx+1f′(x)=12x+12xx=x+12xxf'(x) = \frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} = \frac{x+1}{2x\sqrt{x}}f′(x)=2x1+2xx1=2xxx+1xx=x3/2x\sqrt{x} = x^{3/2}xx=x3/2なので、f′(x)=12x−1/2+12x−3/2=12x+12xx=x+12xx=x+12x3/2f'(x) = \frac{1}{2}x^{-1/2} + \frac{1}{2}x^{-3/2} = \frac{1}{2\sqrt{x}} + \frac{1}{2x\sqrt{x}} = \frac{x+1}{2x\sqrt{x}} = \frac{x+1}{2x^{3/2}}f′(x)=21x−1/2+21x−3/2=2x1+2xx1=2xxx+1=2x3/2x+13. 最終的な答えx+12xx\frac{x+1}{2x\sqrt{x}}2xxx+1またはx+12x3/2\frac{x+1}{2x^{3/2}}2x3/2x+1