$x = \frac{\sqrt{3}+1}{\sqrt{3}-1}$, $y = \frac{\sqrt{3}-1}{\sqrt{3}+1}$ のとき、次の式の値を求めよ。 (1) $x^3y + xy^3$ (2) $4x^2 + 7xy + 4y^2$代数学式の計算有理化因数分解平方根式の値2025/7/51. 問題の内容x=3+13−1x = \frac{\sqrt{3}+1}{\sqrt{3}-1}x=3−13+1, y=3−13+1y = \frac{\sqrt{3}-1}{\sqrt{3}+1}y=3+13−1 のとき、次の式の値を求めよ。(1) x3y+xy3x^3y + xy^3x3y+xy3(2) 4x2+7xy+4y24x^2 + 7xy + 4y^24x2+7xy+4y22. 解き方の手順まず、xxx と yyy をそれぞれ有理化する。x=3+13−1=(3+1)(3+1)(3−1)(3+1)=3+23+13−1=4+232=2+3x = \frac{\sqrt{3}+1}{\sqrt{3}-1} = \frac{(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)} = \frac{3+2\sqrt{3}+1}{3-1} = \frac{4+2\sqrt{3}}{2} = 2+\sqrt{3}x=3−13+1=(3−1)(3+1)(3+1)(3+1)=3−13+23+1=24+23=2+3y=3−13+1=(3−1)(3−1)(3+1)(3−1)=3−23+13−1=4−232=2−3y = \frac{\sqrt{3}-1}{\sqrt{3}+1} = \frac{(\sqrt{3}-1)(\sqrt{3}-1)}{(\sqrt{3}+1)(\sqrt{3}-1)} = \frac{3-2\sqrt{3}+1}{3-1} = \frac{4-2\sqrt{3}}{2} = 2-\sqrt{3}y=3+13−1=(3+1)(3−1)(3−1)(3−1)=3−13−23+1=24−23=2−3次に、x+yx+yx+y と xyxyxy を計算する。x+y=(2+3)+(2−3)=4x+y = (2+\sqrt{3}) + (2-\sqrt{3}) = 4x+y=(2+3)+(2−3)=4xy=(2+3)(2−3)=4−3=1xy = (2+\sqrt{3})(2-\sqrt{3}) = 4 - 3 = 1xy=(2+3)(2−3)=4−3=1(1) x3y+xy3=xy(x2+y2)=xy((x+y)2−2xy)=1(42−2(1))=16−2=14x^3y + xy^3 = xy(x^2+y^2) = xy((x+y)^2 - 2xy) = 1(4^2 - 2(1)) = 16 - 2 = 14x3y+xy3=xy(x2+y2)=xy((x+y)2−2xy)=1(42−2(1))=16−2=14(2) 4x2+7xy+4y2=4(x2+y2)+7xy=4((x+y)2−2xy)+7xy=4((4)2−2(1))+7(1)=4(16−2)+7=4(14)+7=56+7=634x^2 + 7xy + 4y^2 = 4(x^2+y^2) + 7xy = 4((x+y)^2-2xy) + 7xy = 4((4)^2 - 2(1)) + 7(1) = 4(16-2) + 7 = 4(14) + 7 = 56+7 = 634x2+7xy+4y2=4(x2+y2)+7xy=4((x+y)2−2xy)+7xy=4((4)2−2(1))+7(1)=4(16−2)+7=4(14)+7=56+7=633. 最終的な答え(1) x3y+xy3=14x^3y + xy^3 = 14x3y+xy3=14(2) 4x2+7xy+4y2=634x^2 + 7xy + 4y^2 = 634x2+7xy+4y2=63