与えられた式 $1 - 2\sqrt{2\sqrt{2}} - \sqrt{2\sqrt{2} + 2\sqrt{2}}$ の値を計算します。代数学根号式の計算複素数2025/7/61. 問題の内容与えられた式 1−222−22+221 - 2\sqrt{2\sqrt{2}} - \sqrt{2\sqrt{2} + 2\sqrt{2}}1−222−22+22 の値を計算します。2. 解き方の手順まず、内側の根号を整理します。22=2⋅21/2=23/2=23/4\sqrt{2\sqrt{2}} = \sqrt{2 \cdot 2^{1/2}} = \sqrt{2^{3/2}} = 2^{3/4}22=2⋅21/2=23/2=23/4したがって、222=2⋅23/4=27/42\sqrt{2\sqrt{2}} = 2 \cdot 2^{3/4} = 2^{7/4}222=2⋅23/4=27/4次に、外側の根号の中を整理します。22+22=42=4⋅21/2=22⋅21/2=25/2=25/4\sqrt{2\sqrt{2} + 2\sqrt{2}} = \sqrt{4\sqrt{2}} = \sqrt{4 \cdot 2^{1/2}} = \sqrt{2^2 \cdot 2^{1/2}} = \sqrt{2^{5/2}} = 2^{5/4}22+22=42=4⋅21/2=22⋅21/2=25/2=25/4与えられた式は1−27/4−25/4=1−25/4(22/4+1)=1−25/4(2+1)1 - 2^{7/4} - 2^{5/4} = 1 - 2^{5/4}(2^{2/4} + 1) = 1 - 2^{5/4}(\sqrt{2}+1)1−27/4−25/4=1−25/4(22/4+1)=1−25/4(2+1)25/4=2⋅21/4=2242^{5/4} = 2 \cdot 2^{1/4} = 2 \sqrt[4]{2}25/4=2⋅21/4=242したがって1−224(2+1)=1−2(242+24)=1−2(84+24)1 - 2\sqrt[4]{2}(\sqrt{2}+1) = 1 - 2(\sqrt[4]{2} \sqrt{2} + \sqrt[4]{2}) = 1 - 2(\sqrt[4]{8} + \sqrt[4]{2})1−242(2+1)=1−2(422+42)=1−2(48+42)しかし、画像の式は次のようにも解釈できます。1−22i−2i+2i=1−22i−4i=1−22i−2i1 - 2\sqrt{2i} - \sqrt{2i + 2i} = 1 - 2\sqrt{2i} - \sqrt{4i} = 1 - 2\sqrt{2i} - 2\sqrt{i}1−22i−2i+2i=1−22i−4i=1−22i−2ii=1+i2\sqrt{i} = \frac{1+i}{\sqrt{2}}i=21+i2i=2i=21+i2=1+i\sqrt{2i} = \sqrt{2} \sqrt{i} = \sqrt{2} \frac{1+i}{\sqrt{2}} = 1+i2i=2i=221+i=1+i1−2(1+i)−2(1+i2)=1−2−2i−2(1+i)=−1−2i−2−2i=−(1+2)−(2+2)i1 - 2(1+i) - 2(\frac{1+i}{\sqrt{2}}) = 1 - 2 - 2i - \sqrt{2}(1+i) = -1 - 2i - \sqrt{2} - \sqrt{2}i = -(1+\sqrt{2}) - (2+\sqrt{2})i1−2(1+i)−2(21+i)=1−2−2i−2(1+i)=−1−2i−2−2i=−(1+2)−(2+2)i問題文の式を1−222−22+221 - 2\sqrt{2 \sqrt{2}} - \sqrt{2 \sqrt{2} + 2 \sqrt{2}}1−222−22+22と解釈すると、1−222−42=1−222−22=1−222−2241 - 2\sqrt{2\sqrt{2}} - \sqrt{4\sqrt{2}} = 1 - 2\sqrt{2\sqrt{2}} - 2\sqrt{\sqrt{2}} = 1 - 2\sqrt{2\sqrt{2}} - 2\sqrt[4]{2}1−222−42=1−222−22=1−222−242222=223/2=2(23/4)=27/4=2234=2842\sqrt{2\sqrt{2}} = 2\sqrt{2^{3/2}} = 2(2^{3/4}) = 2^{7/4} = 2\sqrt[4]{2^3} = 2\sqrt[4]{8}222=223/2=2(23/4)=27/4=2423=248よって1−284−2241 - 2\sqrt[4]{8} - 2\sqrt[4]{2}1−248−2423. 最終的な答え1−284−2241 - 2\sqrt[4]{8} - 2\sqrt[4]{2}1−248−242または−(1+2)−(2+2)i-(1+\sqrt{2}) - (2+\sqrt{2})i−(1+2)−(2+2)i