$n$ は整数とする。命題「$n^2$ が偶数ならば、$n$ は偶数である」を証明するための穴埋め問題。

数論命題対偶整数偶数奇数証明
2025/7/6

1. 問題の内容

nn は整数とする。命題「n2n^2 が偶数ならば、nn は偶数である」を証明するための穴埋め問題。

2. 解き方の手順

与えられた命題の対偶を証明する。
対偶は「nn が奇数ならば、n2n^2 は奇数である」である。
nn が奇数のとき、nn はある整数 kk を用いて n=2k+1n = 2k+1 と表される。
このとき、
n2=(2k+1)2=4k2+4k+1=2(2k2+2k)+1n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1
2k2+2k2k^2 + 2k は整数であるから、n2n^2 は奇数である。
よって、対偶は真であり、もとの命題も真である。

3. 最終的な答え

1: 対偶
2: 奇数
3: 奇数
4: 2k+1
5: 2k^2+2k
6: 奇数
7: 真
8: 真

「数論」の関連問題

$n$ は自然数とする。$\sqrt{\frac{3024}{n}}$ が自然数となるような $n$ をすべて求めよ。

平方根約数素因数分解整数の性質
2025/7/8

7進法で表すと $abc_{(7)}$ となり、5進法で表すと $bca_{(5)}$ となる数を10進法で表す。

進法整数方程式数の表現
2025/7/8

すべての自然数 $n$ に対して、$2^{n-1} + 3^{3n-2} + 7^{n-1}$ が5の倍数であることを数学的帰納法を用いて証明する。

数学的帰納法整数の性質倍数
2025/7/8

自然数 $n$ に対して、「$n^2$ が 9 の倍数でないならば、$n$ は 3 の倍数でない」という命題を、対偶を利用して証明する問題です。

対偶命題整数の性質倍数証明
2025/7/7

与えられた方程式 $x^n + y^n = z^n$ について、解を求める問題です。

フェルマーの最終定理整数論方程式べき乗
2025/7/7

$n$ が8の約数であることは、$n$ が16の約数であるための何条件か答える問題です。

約数条件必要条件十分条件
2025/7/7

9進数で $abc_{(9)}$ と表される数が、7進数で $bca_{(7)}$ と表される。この条件を満たす $(a, b, c)$ の組をすべて求め、それぞれの数を10進数で表す。

進数数の表現方程式整数
2025/7/7

$n$が20の正の約数ならば、$n$は30の正の約数であるという命題の真偽を判定する。

約数命題真偽判定整数の性質
2025/7/7

$p$ を素数、$n$ を自然数とする。 $\frac{1}{x} + \frac{1}{y} = \frac{1}{p^n}$ かつ $x < y$ を満たす自然数 $x, y$ の組を考える。 (...

素数方程式整数の性質約数
2025/7/7

与えられた条件 $\frac{1}{x} + \frac{1}{y} = \frac{1}{p^n}$ かつ $x < y$ を満たす自然数 $x, y$ の組について、以下の問いに答える。 (1) ...

分数方程式約数整数の性質
2025/7/7