1. 問題の内容
与えられた数式を簡略化したり、微分したりして、空欄を埋める問題です。
2. 解き方の手順
1.
.
右辺を を分母とする分数で表すと、となります。
問題文にあるようにとすると、与えられた式と一致しません。問題文の記述に誤りがあると判断します。この式を変形すると となることがわかります。
2.
なので、
となります。
したがって、 .
3.
について、 を計算すると、
と問題文にあるように(2x-3)2で割る形にはならないため、問題文に誤りがあると判断します。
4.
したがって、
5.
したがって、
6. $(\frac{\log_e|x|}{x^2+x})' = \frac{\frac{1}{x}(x^2+x) - \log_e|x|(2x+1)}{(x^2+x)^2} = \frac{x+1 - (2x+1)\log_e|x|}{(x^2+x)^2} = \frac{\boxed{16}+x - (\boxed{17}x + \boxed{18})\log_e|x|}{(x^2+x)^2}$
したがって、