定積分 $\int_{0}^{\frac{\pi}{16}} \sin(4x) dx$ を計算し、その結果を求めます。解析学定積分三角関数不定積分2025/7/61. 問題の内容定積分 ∫0π16sin(4x)dx\int_{0}^{\frac{\pi}{16}} \sin(4x) dx∫016πsin(4x)dx を計算し、その結果を求めます。2. 解き方の手順sin(4x)\sin(4x)sin(4x) の不定積分を求めます。∫sin(4x)dx=−14cos(4x)+C\int \sin(4x) dx = -\frac{1}{4}\cos(4x) + C∫sin(4x)dx=−41cos(4x)+Cここで、CCCは積分定数です。次に、定積分の値を計算します。∫0π16sin(4x)dx=[−14cos(4x)]0π16=−14cos(4⋅π16)−(−14cos(4⋅0))\int_{0}^{\frac{\pi}{16}} \sin(4x) dx = \left[-\frac{1}{4}\cos(4x)\right]_{0}^{\frac{\pi}{16}} = -\frac{1}{4}\cos\left(4\cdot\frac{\pi}{16}\right) - \left(-\frac{1}{4}\cos(4\cdot 0)\right)∫016πsin(4x)dx=[−41cos(4x)]016π=−41cos(4⋅16π)−(−41cos(4⋅0))=−14cos(π4)+14cos(0)=−14⋅22+14⋅1=−28+14=2−28= -\frac{1}{4}\cos\left(\frac{\pi}{4}\right) + \frac{1}{4}\cos(0) = -\frac{1}{4}\cdot\frac{\sqrt{2}}{2} + \frac{1}{4}\cdot 1 = -\frac{\sqrt{2}}{8} + \frac{1}{4} = \frac{2 - \sqrt{2}}{8}=−41cos(4π)+41cos(0)=−41⋅22+41⋅1=−82+41=82−2最後に、この値を単純化します。2−28=4−32\frac{2-\sqrt{2}}{8} = 4^{-\frac{3}{2}} 82−2=4−23∫0π16sin(4x)dx=[−14cos(4x)]0π16=−28+14=2−28\int_{0}^{\frac{\pi}{16}} \sin(4x) dx = [-\frac{1}{4}cos(4x)]^{\frac{\pi}{16}}_{0} = -\frac{\sqrt{2}}{8} + \frac{1}{4} = \frac{2 - \sqrt{2}}{8}∫016πsin(4x)dx=[−41cos(4x)]016π=−82+41=82−24−32=1432=1(22)32=122⋅32=123=18≠2−284^{-\frac{3}{2}} = \frac{1}{4^{\frac{3}{2}}} = \frac{1}{(2^2)^{\frac{3}{2}}} = \frac{1}{2^{2\cdot\frac{3}{2}}} = \frac{1}{2^3} = \frac{1}{8} \ne \frac{2 - \sqrt{2}}{8}4−23=4231=(22)231=22⋅231=231=81=82−2積分を計算すると:[−14cos(4x)]0π16=−14cos(π4)+14cos(0)[-\frac{1}{4}\cos(4x)]_{0}^{\frac{\pi}{16}} = -\frac{1}{4} \cos(\frac{\pi}{4}) + \frac{1}{4} \cos(0)[−41cos(4x)]016π=−41cos(4π)+41cos(0)=−1422+14= -\frac{1}{4} \frac{\sqrt{2}}{2} + \frac{1}{4}=−4122+41=14−28= \frac{1}{4} - \frac{\sqrt{2}}{8}=41−82=2−28= \frac{2 - \sqrt{2}}{8}=82−24−12=124^{-\frac{1}{2}} = \frac{1}{2}4−21=212−322^{-\frac{3}{2}}2−233. 最終的な答え(キ): −14cos(4x)-\frac{1}{4}cos(4x)−41cos(4x)(ク): 2−28\frac{2-\sqrt{2}}{8}82−2