$3^{\frac{1}{5}} - 3^{-\frac{1}{5}} = 2a$のとき、以下の値を求めよ。 (1) $\sqrt{1+a^2}$ (2) $(a+\sqrt{1+a^2})^5$代数学式の計算指数代数方程式2025/7/61. 問題の内容315−3−15=2a3^{\frac{1}{5}} - 3^{-\frac{1}{5}} = 2a351−3−51=2aのとき、以下の値を求めよ。(1) 1+a2\sqrt{1+a^2}1+a2(2) (a+1+a2)5(a+\sqrt{1+a^2})^5(a+1+a2)52. 解き方の手順(1) 1+a2\sqrt{1+a^2}1+a2を求める。まず、a=12(315−3−15)a = \frac{1}{2}(3^{\frac{1}{5}} - 3^{-\frac{1}{5}})a=21(351−3−51)であるから、a2a^2a2を計算する。a2=14(315−3−15)2=14(325−2+3−25)a^2 = \frac{1}{4}(3^{\frac{1}{5}} - 3^{-\frac{1}{5}})^2 = \frac{1}{4}(3^{\frac{2}{5}} - 2 + 3^{-\frac{2}{5}})a2=41(351−3−51)2=41(352−2+3−52)次に、1+a21+a^21+a2を計算する。1+a2=1+14(325−2+3−25)=14(4+325−2+3−25)=14(2+325+3−25)1+a^2 = 1 + \frac{1}{4}(3^{\frac{2}{5}} - 2 + 3^{-\frac{2}{5}}) = \frac{1}{4}(4 + 3^{\frac{2}{5}} - 2 + 3^{-\frac{2}{5}}) = \frac{1}{4}(2 + 3^{\frac{2}{5}} + 3^{-\frac{2}{5}})1+a2=1+41(352−2+3−52)=41(4+352−2+3−52)=41(2+352+3−52)ここで、(315+3−15)2=325+2+3−25(3^{\frac{1}{5}} + 3^{-\frac{1}{5}})^2 = 3^{\frac{2}{5}} + 2 + 3^{-\frac{2}{5}}(351+3−51)2=352+2+3−52であるから、1+a2=14(325+2+3−25)=14(315+3−15)21+a^2 = \frac{1}{4}(3^{\frac{2}{5}} + 2 + 3^{-\frac{2}{5}}) = \frac{1}{4}(3^{\frac{1}{5}} + 3^{-\frac{1}{5}})^21+a2=41(352+2+3−52)=41(351+3−51)2よって、1+a2=14(315+3−15)2=12(315+3−15)\sqrt{1+a^2} = \sqrt{\frac{1}{4}(3^{\frac{1}{5}} + 3^{-\frac{1}{5}})^2} = \frac{1}{2}(3^{\frac{1}{5}} + 3^{-\frac{1}{5}})1+a2=41(351+3−51)2=21(351+3−51)(2) (a+1+a2)5(a+\sqrt{1+a^2})^5(a+1+a2)5を求める。a+1+a2=12(315−3−15)+12(315+3−15)=12315+12315=315a + \sqrt{1+a^2} = \frac{1}{2}(3^{\frac{1}{5}} - 3^{-\frac{1}{5}}) + \frac{1}{2}(3^{\frac{1}{5}} + 3^{-\frac{1}{5}}) = \frac{1}{2}3^{\frac{1}{5}} + \frac{1}{2}3^{\frac{1}{5}} = 3^{\frac{1}{5}}a+1+a2=21(351−3−51)+21(351+3−51)=21351+21351=351したがって、(a+1+a2)5=(315)5=3(a+\sqrt{1+a^2})^5 = (3^{\frac{1}{5}})^5 = 3(a+1+a2)5=(351)5=33. 最終的な答え(1) 1+a2=12(315+3−15)\sqrt{1+a^2} = \frac{1}{2}(3^{\frac{1}{5}} + 3^{-\frac{1}{5}})1+a2=21(351+3−51)(2) (a+1+a2)5=3(a+\sqrt{1+a^2})^5 = 3(a+1+a2)5=3