全く同じ立方体が4つある。この4つの立方体の面と面を4つの辺が重なるように合わせてできる立体は何種類あるか。ただし回転させて同じになるものは1種類と数える。

幾何学立体図形組み合わせ立方体空間認識
2025/7/7

1. 問題の内容

全く同じ立方体が4つある。この4つの立方体の面と面を4つの辺が重なるように合わせてできる立体は何種類あるか。ただし回転させて同じになるものは1種類と数える。

2. 解き方の手順

4つの立方体を組み合わせる方法を考える。
* **一直線に並べる:** これは例として示されている。
* **L字型に並べる:** 3つを一直線に並べ、残りの1つを端に垂直につける。
* **正方形に並べる:** 2x2の正方形を作る。
* **T字型に並べる:** 3つを一直線に並べ、残りの1つを真ん中に垂直につける。
* **階段状に並べる:** 2つを並べ、その上に2つをずらして並べる。
これら以外には、面と面を合わせて、辺も重なるように4つの立方体を組み合わせることは出来ない。
回転させて同じになるものを除外する。
一直線、正方形は回転しても同じ形になる。L字型とT字型は回転させると区別できる。階段状のものは回転させて同じになる。
したがって、上記の5種類はすべて異なる形となる。

3. 最終的な答え

5

「幾何学」の関連問題

4点A(-3, 2), B(2, -2), C(4, 3)と点Dを頂点とする平行四辺形があるとき、点Dの座標としてありうるものを全て求める。

座標平面平行四辺形ベクトル中点
2025/7/11

座標平面上の4点 $A(0,0)$, $B(0,1)$, $C(1,1)$, $D(1,0)$ が与えられています。 実数 $0<t<1$ に対して、線分 $AB$, $BC$, $CD$ を $t:...

座標平面内分点面積曲線の長さ積分
2025/7/11

三角形ABCにおいて、$AB=3, BC=6, CA=5$である。 (1) $\cos{\angle B}$と三角形ABCの面積を求める。 (2) 辺BCの中点をMとし、直線AMと三角形ABCの外接円...

三角形余弦定理ヘロンの公式外接円方べきの定理相似面積
2025/7/11

三角形ABCの重心をGとし、直線AGと辺BCの交点をDとする。このとき、三角形BDGの面積と三角形ABCの面積の比を求める問題です。ただし、問題文には$\frac{\triangle BDGの面積}{...

三角形重心面積比中線相似
2025/7/11

二つの問題があります。 (1) 直線 $l$ は円 $O$ と円 $O'$ の共通接線であるとき、$x$ の値を求めよ。円 $O$ の半径は6, 円 $O'$ の半径は2である。 (2) 直線 $AB...

接線三平方の定理方べきの定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとする。$\angle DAB = 42^\circ$ 、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理
2025/7/11

四角形ABCDは円に内接しており、点Aにおける円の接線を$l$とする。$\angle DAB = 42^\circ$、$\angle ABD = 25^\circ$ のとき、$\angle BCD$ ...

四角形接弦定理円周角の定理
2025/7/11

三角形ABCにおいて、$BC=4$, $CA=5$, $\cos{C} = \frac{\sqrt{3}}{2}$であるとき、三角形ABCの面積を求める。

三角形面積三角比余弦定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとします。$\angle DAB = 42^\circ$、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理角度
2025/7/11

三角形ABCにおいて、辺BCを3:4に内分する点をP、辺CAを2:3に内分する点をQとする。線分APとBQの交点をRとする。このとき、AR:RPとBR:RQの比を求める。

ベクトル内分三角形
2025/7/11