三角形ABCにおいて、$BC=4$, $CA=5$, $\cos{C} = \frac{\sqrt{3}}{2}$であるとき、三角形ABCの面積を求める。

幾何学三角形面積三角比余弦定理
2025/7/11

1. 問題の内容

三角形ABCにおいて、BC=4BC=4, CA=5CA=5, cosC=32\cos{C} = \frac{\sqrt{3}}{2}であるとき、三角形ABCの面積を求める。

2. 解き方の手順

まず、cosC\cos{C} の値から sinC\sin{C} の値を求める。
sin2C+cos2C=1\sin^2{C} + \cos^2{C} = 1の関係式を用いると、
sin2C=1cos2C=1(32)2=134=14\sin^2{C} = 1 - \cos^2{C} = 1 - (\frac{\sqrt{3}}{2})^2 = 1 - \frac{3}{4} = \frac{1}{4}
0<C<π0 < C < \pi なので sinC>0\sin{C} > 0。よって、
sinC=14=12\sin{C} = \sqrt{\frac{1}{4}} = \frac{1}{2}
三角形の面積 SS は、S=12×BC×CA×sinCS = \frac{1}{2} \times BC \times CA \times \sin{C}で求められる。
与えられた値とsinC\sin{C}の値を代入すると、
S=12×4×5×12=5S = \frac{1}{2} \times 4 \times 5 \times \frac{1}{2} = 5

3. 最終的な答え

5

「幾何学」の関連問題

4点A(-3, 2), B(2, -2), C(4, 3)と点Dを頂点とする平行四辺形があるとき、点Dの座標としてありうるものを全て求める。

座標平面平行四辺形ベクトル中点
2025/7/11

座標平面上の4点 $A(0,0)$, $B(0,1)$, $C(1,1)$, $D(1,0)$ が与えられています。 実数 $0<t<1$ に対して、線分 $AB$, $BC$, $CD$ を $t:...

座標平面内分点面積曲線の長さ積分
2025/7/11

三角形ABCにおいて、$AB=3, BC=6, CA=5$である。 (1) $\cos{\angle B}$と三角形ABCの面積を求める。 (2) 辺BCの中点をMとし、直線AMと三角形ABCの外接円...

三角形余弦定理ヘロンの公式外接円方べきの定理相似面積
2025/7/11

三角形ABCの重心をGとし、直線AGと辺BCの交点をDとする。このとき、三角形BDGの面積と三角形ABCの面積の比を求める問題です。ただし、問題文には$\frac{\triangle BDGの面積}{...

三角形重心面積比中線相似
2025/7/11

二つの問題があります。 (1) 直線 $l$ は円 $O$ と円 $O'$ の共通接線であるとき、$x$ の値を求めよ。円 $O$ の半径は6, 円 $O'$ の半径は2である。 (2) 直線 $AB...

接線三平方の定理方べきの定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとする。$\angle DAB = 42^\circ$ 、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理
2025/7/11

四角形ABCDは円に内接しており、点Aにおける円の接線を$l$とする。$\angle DAB = 42^\circ$、$\angle ABD = 25^\circ$ のとき、$\angle BCD$ ...

四角形接弦定理円周角の定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとします。$\angle DAB = 42^\circ$、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理角度
2025/7/11

三角形ABCにおいて、辺BCを3:4に内分する点をP、辺CAを2:3に内分する点をQとする。線分APとBQの交点をRとする。このとき、AR:RPとBR:RQの比を求める。

ベクトル内分三角形
2025/7/11

三角形ABCにおいて、辺BCを3:4に内分する点をP、辺CAを2:3に内分する点をQとする。線分APとBQの交点をRとする。このとき、AR:RPおよびBR:RQを求める。

ベクトル内分点チェバの定理メネラウスの定理
2025/7/11