以下の定積分を計算します。 $\int_{1}^{4} \left( \sqrt[4]{x^3} + \frac{1}{\sqrt{2x}} + (3x)^2 \right) dx$解析学定積分積分計算関数2025/7/71. 問題の内容以下の定積分を計算します。∫14(x34+12x+(3x)2)dx\int_{1}^{4} \left( \sqrt[4]{x^3} + \frac{1}{\sqrt{2x}} + (3x)^2 \right) dx∫14(4x3+2x1+(3x)2)dx2. 解き方の手順まず、積分を分割して、各項を個別に積分します。∫14x34dx+∫1412xdx+∫14(3x)2dx\int_{1}^{4} \sqrt[4]{x^3} dx + \int_{1}^{4} \frac{1}{\sqrt{2x}} dx + \int_{1}^{4} (3x)^2 dx∫144x3dx+∫142x1dx+∫14(3x)2dxそれぞれの積分を計算します。∫14x34dx=∫14x34dx=[47x74]14=47(474−174)=47(22)74−47=47(2144−1)=47(272−1)=47(232−1)=47(82−1)=322−47\int_{1}^{4} \sqrt[4]{x^3} dx = \int_{1}^{4} x^{\frac{3}{4}} dx = \left[ \frac{4}{7} x^{\frac{7}{4}} \right]_{1}^{4} = \frac{4}{7} (4^{\frac{7}{4}} - 1^{\frac{7}{4}}) = \frac{4}{7} (2^2)^{\frac{7}{4}} - \frac{4}{7} = \frac{4}{7} (2^{\frac{14}{4}} - 1) = \frac{4}{7} (2^{\frac{7}{2}} - 1) = \frac{4}{7} (2^3 \sqrt{2} - 1) = \frac{4}{7} (8\sqrt{2} - 1) = \frac{32\sqrt{2} - 4}{7}∫144x3dx=∫14x43dx=[74x47]14=74(447−147)=74(22)47−74=74(2414−1)=74(227−1)=74(232−1)=74(82−1)=7322−4∫1412xdx=12∫14x−12dx=12[2x12]14=22(4−1)=22(2−1)=22=2\int_{1}^{4} \frac{1}{\sqrt{2x}} dx = \frac{1}{\sqrt{2}} \int_{1}^{4} x^{-\frac{1}{2}} dx = \frac{1}{\sqrt{2}} \left[ 2x^{\frac{1}{2}} \right]_{1}^{4} = \frac{2}{\sqrt{2}} (\sqrt{4} - \sqrt{1}) = \frac{2}{\sqrt{2}} (2-1) = \frac{2}{\sqrt{2}} = \sqrt{2}∫142x1dx=21∫14x−21dx=21[2x21]14=22(4−1)=22(2−1)=22=2∫14(3x)2dx=∫149x2dx=[3x3]14=3(43−13)=3(64−1)=3(63)=189\int_{1}^{4} (3x)^2 dx = \int_{1}^{4} 9x^2 dx = \left[ 3x^3 \right]_{1}^{4} = 3(4^3 - 1^3) = 3(64 - 1) = 3(63) = 189∫14(3x)2dx=∫149x2dx=[3x3]14=3(43−13)=3(64−1)=3(63)=189したがって、元の積分は322−47+2+189=322−4+727+189=392−47+189=392−4+189(7)7=392−4+13237=392+13197\frac{32\sqrt{2} - 4}{7} + \sqrt{2} + 189 = \frac{32\sqrt{2} - 4 + 7\sqrt{2}}{7} + 189 = \frac{39\sqrt{2} - 4}{7} + 189 = \frac{39\sqrt{2} - 4 + 189(7)}{7} = \frac{39\sqrt{2} - 4 + 1323}{7} = \frac{39\sqrt{2} + 1319}{7}7322−4+2+189=7322−4+72+189=7392−4+189=7392−4+189(7)=7392−4+1323=7392+13193. 最終的な答え392+13197\frac{39\sqrt{2} + 1319}{7}7392+1319