定積分 $\int_{-2}^{-1} (x-1)(\frac{1}{x^3} + 1) dx$ を計算します。解析学定積分積分計算2025/7/71. 問題の内容定積分 ∫−2−1(x−1)(1x3+1)dx\int_{-2}^{-1} (x-1)(\frac{1}{x^3} + 1) dx∫−2−1(x−1)(x31+1)dx を計算します。2. 解き方の手順まず、被積分関数を展開します。(x−1)(1x3+1)=xx3+x−1x3−1=1x2+x−1x3−1(x-1)(\frac{1}{x^3} + 1) = \frac{x}{x^3} + x - \frac{1}{x^3} - 1 = \frac{1}{x^2} + x - \frac{1}{x^3} - 1(x−1)(x31+1)=x3x+x−x31−1=x21+x−x31−1次に、この式を積分します。∫(1x2+x−1x3−1)dx=∫(x−2+x−x−3−1)dx=−x−1+x22−x−2−2−x+C=−1x+x22+12x2−x+C\int (\frac{1}{x^2} + x - \frac{1}{x^3} - 1) dx = \int (x^{-2} + x - x^{-3} - 1) dx = -x^{-1} + \frac{x^2}{2} - \frac{x^{-2}}{-2} - x + C = -\frac{1}{x} + \frac{x^2}{2} + \frac{1}{2x^2} - x + C∫(x21+x−x31−1)dx=∫(x−2+x−x−3−1)dx=−x−1+2x2−−2x−2−x+C=−x1+2x2+2x21−x+Cここで、積分範囲 [−2,−1][-2, -1][−2,−1] で定積分を行います。∫−2−1(x−1)(1x3+1)dx=[−1x+x22+12x2−x]−2−1\int_{-2}^{-1} (x-1)(\frac{1}{x^3} + 1) dx = [-\frac{1}{x} + \frac{x^2}{2} + \frac{1}{2x^2} - x]_{-2}^{-1}∫−2−1(x−1)(x31+1)dx=[−x1+2x2+2x21−x]−2−1まず、x=−1x=-1x=−1 を代入します。−1−1+(−1)22+12(−1)2−(−1)=1+12+12+1=3-\frac{1}{-1} + \frac{(-1)^2}{2} + \frac{1}{2(-1)^2} - (-1) = 1 + \frac{1}{2} + \frac{1}{2} + 1 = 3−−11+2(−1)2+2(−1)21−(−1)=1+21+21+1=3次に、x=−2x=-2x=−2 を代入します。−1−2+(−2)22+12(−2)2−(−2)=12+42+18+2=12+2+18+2=48+168+18+168=378-\frac{1}{-2} + \frac{(-2)^2}{2} + \frac{1}{2(-2)^2} - (-2) = \frac{1}{2} + \frac{4}{2} + \frac{1}{8} + 2 = \frac{1}{2} + 2 + \frac{1}{8} + 2 = \frac{4}{8} + \frac{16}{8} + \frac{1}{8} + \frac{16}{8} = \frac{37}{8}−−21+2(−2)2+2(−2)21−(−2)=21+24+81+2=21+2+81+2=84+816+81+816=837したがって、定積分は3−378=248−378=−1383 - \frac{37}{8} = \frac{24}{8} - \frac{37}{8} = -\frac{13}{8}3−837=824−837=−8133. 最終的な答え−138-\frac{13}{8}−813