10本のくじの中に3本の当たりくじがある。この中から同時に2本のくじを引くとき、当たりくじの本数の期待値を求めよ。

確率論・統計学確率期待値組み合わせ
2025/7/7

1. 問題の内容

10本のくじの中に3本の当たりくじがある。この中から同時に2本のくじを引くとき、当たりくじの本数の期待値を求めよ。

2. 解き方の手順

当たりくじの本数は0本、1本、2本のいずれかである。それぞれの確率を計算し、期待値を求める。
* 当たりくじの本数が0本の場合:
当たりくじ以外から2本引く確率。当たりくじ以外の本数は7本なので、確率は
P(0)=7C210C2=7×62×110×92×1=2145=715P(0) = \frac{{}_7C_2}{{}_{10}C_2} = \frac{\frac{7 \times 6}{2 \times 1}}{\frac{10 \times 9}{2 \times 1}} = \frac{21}{45} = \frac{7}{15}
* 当たりくじの本数が1本の場合:
当たりくじから1本、当たりくじ以外から1本引く確率。確率は
P(1)=3C1×7C110C2=3×710×92×1=2145=715P(1) = \frac{{}_3C_1 \times {}_7C_1}{{}_{10}C_2} = \frac{3 \times 7}{\frac{10 \times 9}{2 \times 1}} = \frac{21}{45} = \frac{7}{15}
* 当たりくじの本数が2本の場合:
当たりくじから2本引く確率。確率は
P(2)=3C210C2=3×22×110×92×1=345=115P(2) = \frac{{}_3C_2}{{}_{10}C_2} = \frac{\frac{3 \times 2}{2 \times 1}}{\frac{10 \times 9}{2 \times 1}} = \frac{3}{45} = \frac{1}{15}
期待値EEは、それぞれの確率と当たりくじの本数を掛け合わせたものの和である。
E=0×P(0)+1×P(1)+2×P(2)=0×715+1×715+2×115=0+715+215=915=35E = 0 \times P(0) + 1 \times P(1) + 2 \times P(2) = 0 \times \frac{7}{15} + 1 \times \frac{7}{15} + 2 \times \frac{1}{15} = 0 + \frac{7}{15} + \frac{2}{15} = \frac{9}{15} = \frac{3}{5}

3. 最終的な答え

3/5 本

「確率論・統計学」の関連問題

9人の中学生を3人ずつ3組に分ける場合の数を求める問題です。ただし、3つの組は区別できないものとします。

組み合わせ場合の数組合せ
2025/7/13

高校生10人と中学生7人の中から、高校生2人と中学生3人を選ぶ選び方は何通りあるかを求める問題です。

組み合わせ場合の数順列
2025/7/13

高校生10人、中学生7人の中から、高校生2人、中学生3人を選ぶ選び方は何通りあるかを求める問題です。

組み合わせ場合の数組み合わせ積の法則
2025/7/13

異なる色の12個の玉を、指定された方法で分ける場合の数を計算する問題です。 (1) 12個の玉を、A, B, Cの3つの組に4個ずつ分ける場合の数を求めます。 (2) 12個の玉を、4個ずつの3つの組...

組み合わせ順列場合の数二項係数
2025/7/13

大人8人と子ども4人の中から5人を選ぶとき、以下の選び方は何通りあるか。 (1) すべての選び方 (2) 大人3人と子ども2人を選ぶ (3) 子どもが少なくとも1人は含まれるように選ぶ (4) 特定の...

組み合わせ順列場合の数
2025/7/13

組み合わせの計算問題です。 1. (1) ${}_6C_3$、(2) ${}_{11}C_8$、(3) ${}_8C_0$ の値を求めます。

組み合わせ順列・組み合わせ二項係数
2025/7/13

6. (1) 8人が手をつないで輪を作る方法は何通りあるか。 (2) 色の異なる7個の玉を、机の上で円形に並べる方法は何通りあるか。 7. (1) 1, 2, 3, 4を使ってできる3桁の整数は...

順列組み合わせ円順列
2025/7/13

問題6:2桁の自然数のうち、 (1) 各位の数字の積が偶数になるものは何個あるか。 (2) 各位の数字の和が奇数になるものは何個あるか。 問題7:大中小3個のサイコロを投げるとき、 (1) 目の積が偶...

場合の数確率整数偶数奇数サイコロ自然数
2025/7/13

4冊の数学の参考書a, b, c, d から1冊選び、3冊の英語の参考書 p, q, r から1冊選ぶとき、合計2冊を選ぶ方法は何通りあるかを求める問題です。

組み合わせ場合の数積の法則
2025/7/13

1つのサイコロを2回投げるとき、目の和が以下のようになる場合の数をそれぞれ求めます。 (1) 6または9 (2) 10以上 (3) 3の倍数

確率サイコロ場合の数
2025/7/13