点A(1, 4)と点B(-3, 6)の間の距離ABを求める問題です。

幾何学距離座標2点間の距離
2025/7/7

1. 問題の内容

点A(1, 4)と点B(-3, 6)の間の距離ABを求める問題です。

2. 解き方の手順

2点間の距離の公式を用います。
点Aの座標を(x1,y1)(x_1, y_1)、点Bの座標を(x2,y2)(x_2, y_2)とすると、2点間の距離は次の式で表されます。
AB=(x2x1)2+(y2y1)2AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
この問題では、x1=1x_1 = 1, y1=4y_1 = 4, x2=3x_2 = -3, y2=6y_2 = 6なので、これらの値を公式に代入します。
AB=(31)2+(64)2AB = \sqrt{(-3 - 1)^2 + (6 - 4)^2}
AB=(4)2+(2)2AB = \sqrt{(-4)^2 + (2)^2}
AB=16+4AB = \sqrt{16 + 4}
AB=20AB = \sqrt{20}
AB=25AB = 2\sqrt{5}

3. 最終的な答え

252\sqrt{5}

「幾何学」の関連問題

2つの直線 $y=3x+1$ と $y=\frac{1}{2}x+2$ のなす角 $\theta$ ($0 < \theta < \frac{\pi}{2}$) を求める問題です。

直線角度傾き三角関数
2025/7/13

問題1: 直線 $4x + 3y + 1 = 0$ に関して、点 $A(-5, -2)$ と対称な点 $B$ の座標を求める。 問題2: 2点 $A(3, 4)$, $B(5, 0)$ について、線分...

座標平面直線点と直線の対称移動垂直二等分線方程式
2025/7/13

問題2について、以下の4つの問いに答えます。 (1) 2点A(3, 2)とB(1, 5)の距離を求めます。 (2) 直線ABの方程式を求めます。 (3) 点C(-2, -1)と直線ABの距離を求めます...

座標平面距離直線三角形の面積点と直線の距離
2025/7/13

与えられたグラフに一致する三角関数を、選択肢①~⑧の中から全て選ぶ問題です。グラフは$y = \cos \theta$ を平行移動および上下反転した形をしています。

三角関数グラフ平行移動位相cos
2025/7/13

3つの直角三角形について、それぞれ角度$\theta$に対する$\sin \theta$, $\cos \theta$, $\tan \theta$の値を求めよ。

三角比直角三角形sincostanピタゴラスの定理
2025/7/13

$\triangle OAB$ において、辺 $AB$ を $2:3$ に内分する点を $L$ 、辺 $OA$ の中点を $M$ とする。線分 $OL$ と線分 $BM$ の交点を $P$ とするとき...

ベクトル内分点線分の比
2025/7/13

三角関数の問題が5つあります。 (1) $\alpha, \beta$ が鋭角で、$\sin{\alpha} = \frac{3}{5}$, $\cos{\beta} = \frac{5}{13}$ ...

三角関数加法定理三角関数の合成三角方程式グラフの平行移動
2025/7/13

領域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge 0\}$ を極座標変換したとき、$r\theta$ 平面上の領域 $D_0$ として正しいものを選択肢か...

極座標変換領域積分
2025/7/13

## 1. 問題の内容

図形と方程式直線垂直二等分線対称な点
2025/7/13

領域 $D = \{(x, y) | 1 \le x^2 + y^2 \le 4, y \ge x, y \ge -x\}$ を極座標変換したとき、rθ平面上の領域 $D_0$ として正しいものを選択...

極座標変換積分領域
2025/7/13