$x$ の方程式 $2x^3 - 3x^2 - 12x - a = 0$ が異なる3つの実数解をもつような $a$ の値の範囲を求めよ。

代数学三次方程式微分増減実数解グラフ
2025/7/7

1. 問題の内容

xx の方程式 2x33x212xa=02x^3 - 3x^2 - 12x - a = 0 が異なる3つの実数解をもつような aa の値の範囲を求めよ。

2. 解き方の手順

まず、与えられた方程式を f(x)=2x33x212xf(x) = 2x^3 - 3x^2 - 12x とおき、f(x)=af(x) = a と変形します。
y=f(x)y = f(x) のグラフと y=ay = a のグラフが異なる3点で交わるような aa の範囲を求めることが目標となります。
f(x)f(x) の増減を調べるために、微分を計算します。
f(x)=6x26x12=6(x2x2)=6(x2)(x+1)f'(x) = 6x^2 - 6x - 12 = 6(x^2 - x - 2) = 6(x - 2)(x + 1)
f(x)=0f'(x) = 0 となる xxx=2,1x = 2, -1 です。
次に、増減表を作成します。
| x | ... | -1 | ... | 2 | ... |
| :---- | :---- | :---- | :---- | :---- | :---- |
| f'(x) | + | 0 | - | 0 | + |
| f(x) | 増加 | 極大値 | 減少 | 極小値 | 増加 |
x=1x = -1 のとき、f(1)=2(1)33(1)212(1)=23+12=7f(-1) = 2(-1)^3 - 3(-1)^2 - 12(-1) = -2 - 3 + 12 = 7
x=2x = 2 のとき、f(2)=2(2)33(2)212(2)=161224=20f(2) = 2(2)^3 - 3(2)^2 - 12(2) = 16 - 12 - 24 = -20
y=f(x)y = f(x) のグラフを描くと、極大値が7、極小値が-20であることがわかります。
したがって、y=f(x)y = f(x) のグラフと y=ay = a のグラフが異なる3点で交わるためには、 20<a<7-20 < a < 7 である必要があります。

3. 最終的な答え

20<a<7-20 < a < 7

「代数学」の関連問題

与えられた一次関数について、指定された定義域における値域を求め、最大値と最小値を求めます。 (1) $y = 2x + 3$ ($-1 \le x \le 1$) (2) $y = -3x - 2$...

一次関数値域最大値最小値定義域
2025/7/7

与えられた連立方程式を解いて、$x$ と $y$ の値を求めます。 問題7: $\begin{cases} \frac{x}{6} - \frac{y}{4} = -2 \\ 3x + 2y = 3 ...

連立方程式一次方程式
2025/7/7

2桁の正の整数とその数の十の位と一の位の数を入れ替えてできる数との差が9の倍数になることを説明する文章の空欄を埋める問題です。

整数の性質文字式倍数
2025/7/7

二つの連立一次方程式を解く問題です。 (5) $\begin{cases} x - 5y = -3 \\ 2(x - 3y) - x = -4 \end{cases}$ (6) $\begin{cas...

連立一次方程式代入法加減法
2025/7/7

以下の連立方程式を解きます。 $ \begin{cases} 3x + 2y = 14 \\ 7x - 5y = -6 \end{cases} $

連立方程式加減法線形方程式
2025/7/7

画像に写っている連立方程式の問題のうち、問題番号6と7を解きます。 問題6: $0.2x - 0.6y = 3$ $3x - 2y = 3$ 問題7: $\frac{x}{6} - \frac{y}{...

連立方程式一次方程式
2025/7/7

連立方程式 $ \begin{cases} 2x - 5y = 6 \\ x = 3y + 2 \end{cases} $ を、加減法と代入法で解く。

連立方程式加減法代入法一次方程式
2025/7/7

(1) $V = \frac{1}{3}a^2h$ を $h$ について解く。 (2) $a + \frac{b}{4} = c$ を $b$ について解く。

数式変形解の公式文字式の計算
2025/7/7

$24x^2y$ を $-9x$ で割る問題です。数式で表すと、$24x^2y \div (-9x)$ を計算します。

整式割り算因数分解文字式
2025/7/7

与えられた数式 $12x^2y \div (2xy)^2 \times (-3y)^2$ を簡略化して計算します。

式の計算簡略化代数式分数式
2025/7/7