与えられた漸化式 $a_{n+1} = 3a_n + 3n$ と初期条件 $a_1 = 3$ から数列 $\{a_n\}$ の一般項を求めます。代数学数列漸化式一般項2025/7/71. 問題の内容与えられた漸化式 an+1=3an+3na_{n+1} = 3a_n + 3nan+1=3an+3n と初期条件 a1=3a_1 = 3a1=3 から数列 {an}\{a_n\}{an} の一般項を求めます。2. 解き方の手順まず、an+1=3an+3na_{n+1} = 3a_n + 3nan+1=3an+3n の両辺を 3n+13^{n+1}3n+1 で割ります。an+13n+1=3an3n+1+3n3n+1\frac{a_{n+1}}{3^{n+1}} = \frac{3a_n}{3^{n+1}} + \frac{3n}{3^{n+1}}3n+1an+1=3n+13an+3n+13nan+13n+1=an3n+n3n\frac{a_{n+1}}{3^{n+1}} = \frac{a_n}{3^n} + \frac{n}{3^n}3n+1an+1=3nan+3nnここで、bn=an3nb_n = \frac{a_n}{3^n}bn=3nan とおくと、漸化式は次のようになります。bn+1=bn+n3nb_{n+1} = b_n + \frac{n}{3^n}bn+1=bn+3nnこの漸化式より、bn+1−bn=n3nb_{n+1} - b_n = \frac{n}{3^n}bn+1−bn=3nnn≥1n \ge 1n≥1 のとき、bn=b1+∑k=1n−1k3kb_n = b_1 + \sum_{k=1}^{n-1} \frac{k}{3^k}bn=b1+∑k=1n−13kkここで、b1=a131=33=1b_1 = \frac{a_1}{3^1} = \frac{3}{3} = 1b1=31a1=33=1 よりbn=1+∑k=1n−1k3kb_n = 1 + \sum_{k=1}^{n-1} \frac{k}{3^k}bn=1+∑k=1n−13kkS=∑k=1n−1k3k=13+232+333+⋯+n−13n−1S = \sum_{k=1}^{n-1} \frac{k}{3^k} = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n-1}{3^{n-1}}S=∑k=1n−13kk=31+322+333+⋯+3n−1n−1とおくと、13S=132+233+⋯+n−23n−1+n−13n\frac{1}{3}S = \frac{1}{3^2} + \frac{2}{3^3} + \dots + \frac{n-2}{3^{n-1}} + \frac{n-1}{3^n}31S=321+332+⋯+3n−1n−2+3nn−1S−13S=13+132+133+⋯+13n−1−n−13nS - \frac{1}{3}S = \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}} - \frac{n-1}{3^n}S−31S=31+321+331+⋯+3n−11−3nn−123S=13(1−(13)n−1)1−13−n−13n\frac{2}{3}S = \frac{\frac{1}{3}(1 - (\frac{1}{3})^{n-1})}{1 - \frac{1}{3}} - \frac{n-1}{3^n}32S=1−3131(1−(31)n−1)−3nn−123S=13(1−(13)n−1)23−n−13n\frac{2}{3}S = \frac{\frac{1}{3}(1 - (\frac{1}{3})^{n-1})}{\frac{2}{3}} - \frac{n-1}{3^n}32S=3231(1−(31)n−1)−3nn−123S=12(1−13n−1)−n−13n=12−12⋅3n−1−n−13n\frac{2}{3}S = \frac{1}{2}(1 - \frac{1}{3^{n-1}}) - \frac{n-1}{3^n} = \frac{1}{2} - \frac{1}{2\cdot3^{n-1}} - \frac{n-1}{3^n}32S=21(1−3n−11)−3nn−1=21−2⋅3n−11−3nn−123S=12−32⋅3n−2(n−1)2⋅3n=12−2n+12⋅3n\frac{2}{3}S = \frac{1}{2} - \frac{3}{2\cdot3^n} - \frac{2(n-1)}{2\cdot3^n} = \frac{1}{2} - \frac{2n+1}{2\cdot3^n}32S=21−2⋅3n3−2⋅3n2(n−1)=21−2⋅3n2n+1S=32(12−2n+12⋅3n)=34−2n+14⋅3n−1S = \frac{3}{2}(\frac{1}{2} - \frac{2n+1}{2\cdot3^n}) = \frac{3}{4} - \frac{2n+1}{4\cdot3^{n-1}}S=23(21−2⋅3n2n+1)=43−4⋅3n−12n+1bn=1+34−2n+14⋅3n−1=74−2n+14⋅3n−1b_n = 1 + \frac{3}{4} - \frac{2n+1}{4\cdot3^{n-1}} = \frac{7}{4} - \frac{2n+1}{4\cdot3^{n-1}}bn=1+43−4⋅3n−12n+1=47−4⋅3n−12n+1したがって、an=3nbn=3n(74−2n+14⋅3n−1)=743n−3(2n+1)4a_n = 3^n b_n = 3^n (\frac{7}{4} - \frac{2n+1}{4\cdot3^{n-1}}) = \frac{7}{4}3^n - \frac{3(2n+1)}{4}an=3nbn=3n(47−4⋅3n−12n+1)=473n−43(2n+1)an=7⋅3n−6n−34a_n = \frac{7 \cdot 3^n - 6n - 3}{4}an=47⋅3n−6n−33. 最終的な答えan=7⋅3n−6n−34a_n = \frac{7 \cdot 3^n - 6n - 3}{4}an=47⋅3n−6n−3