10チームが総当たり戦(リーグ戦)を行うとき、試合総数が何通りあるかを求める問題です。

離散数学組み合わせ総当たり戦場合の数
2025/7/7

1. 問題の内容

10チームが総当たり戦(リーグ戦)を行うとき、試合総数が何通りあるかを求める問題です。

2. 解き方の手順

総当たり戦では、各チームが他のすべてのチームと1回ずつ試合を行います。チーム数を nn とすると、総試合数は組み合わせの数で計算できます。つまり、 nn チームから2チームを選ぶ組み合わせの数が総試合数になります。組み合わせの公式は以下の通りです。
(nk)=n!k!(nk)!{n \choose k} = \frac{n!}{k!(n-k)!}
今回の問題では、n=10n=10 であり、k=2k=2 です。したがって、総試合数は以下のようになります。
(102)=10!2!(102)!=10!2!8!=10×92×1=45{10 \choose 2} = \frac{10!}{2!(10-2)!} = \frac{10!}{2!8!} = \frac{10 \times 9}{2 \times 1} = 45

3. 最終的な答え

45通り

「離散数学」の関連問題

右図のA地点からB地点へ行く最短経路の総数と、P地点を通ってA地点からB地点へ行く最短経路の総数を求める問題です。

組み合わせ最短経路組み合わせ論
2025/7/11

正方形の頂点に1から4までの番号を振る方法は何通りあるか。ただし、回転させて一致するものは同じとみなす。

組み合わせ順列対称性群論
2025/7/11

男子4人と女子5人がいる。女子と女子の間に必ず男子が入るように、男女交互に一列に並べる方法は何通りあるか。

順列組み合わせ場合の数数え上げ
2025/7/11

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ が与えられ、部分集合 $A = \{1, 3, 5, 6, 7, 9\}$ と $B = \{2, 3, 4, 5, ...

集合集合演算補集合共通部分
2025/7/11

与えられた集合 $A$ と $B$ について、共通部分 $A \cap B$ と和集合 $A \cup B$ を求める問題です。

集合共通部分和集合集合演算
2025/7/11

(8) 重複組合せ ${}_4H_5$ の値を求める問題です。 (9) 区別のつかない7個の球を5つの箱に入れる方法の総数を求める問題です。

重複組合せ組合せ数え上げ場合の数
2025/7/11

$n$を2以上の自然数とする。$n$個の数$1, 2, \dots, n$の積の総和$P$を求めたい。ただし、$a \times b$と$b \times a$は同じものとする。 $S = 1 + 2...

組み合わせ総和自然数組み合わせ論
2025/7/10

与えられた集合$A$と$B$の共通部分$A \cap B$と和集合$A \cup B$を求める問題。また、与えられた命題が真であるか偽であるかを判定し、偽である場合は反例を答える問題。さらに、与えられ...

集合命題真偽否定
2025/7/10

問題は、与えられた2つの集合 $A$ と $B$ に対して、その共通部分 $A \cap B$ と和集合 $A \cup B$ を求めることです。2つの異なる組の集合 $A$ と $B$ について、そ...

集合共通部分和集合集合演算
2025/7/10

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$ が与えられたとき、以下の集合を要素を並べて表す問題です。 (1) 3の倍数の集合 A (2) 12の約数の集合 B。ただし、...

集合集合演算補集合
2025/7/10