数列 $\{a_n\}$ について、$n \ge 2$ のとき、不等式を繰り返し用いることで、以下の不等式が得られることを示しています。 $0 \le |a_n - 3| < \frac{2}{3} |a_{n-1} - 3| < \cdots < (\frac{2}{3})^{n-1} |a_1 - 3|$

解析学数列不等式極限
2025/4/1

1. 問題の内容

数列 {an}\{a_n\} について、n2n \ge 2 のとき、不等式を繰り返し用いることで、以下の不等式が得られることを示しています。
0an3<23an13<<(23)n1a130 \le |a_n - 3| < \frac{2}{3} |a_{n-1} - 3| < \cdots < (\frac{2}{3})^{n-1} |a_1 - 3|

2. 解き方の手順

この問題は、不等式を繰り返し適用することで、an3|a_n - 3|(23)n1a13(\frac{2}{3})^{n-1} |a_1 - 3| より小さくなることを示すものです。
問題文から不等式(1)が与えられていると推測できます。ここでは、不等式(1)が
an3<23an13|a_n - 3| < \frac{2}{3} |a_{n-1} - 3|
であると仮定します。
n2n \ge 2 のとき、不等式(1)を繰り返し適用すると、以下のようになります。
an3<23an13|a_n - 3| < \frac{2}{3} |a_{n-1} - 3|
an13<23an23|a_{n-1} - 3| < \frac{2}{3} |a_{n-2} - 3|
これを繰り返すと、
a23<23a13|a_2 - 3| < \frac{2}{3} |a_1 - 3|
これらの不等式を組み合わせると、
an3<23an13<(23)2an23<<(23)n1a13|a_n - 3| < \frac{2}{3} |a_{n-1} - 3| < (\frac{2}{3})^2 |a_{n-2} - 3| < \cdots < (\frac{2}{3})^{n-1} |a_1 - 3|
したがって、0an3<(23)n1a130 \le |a_n - 3| < (\frac{2}{3})^{n-1} |a_1 - 3| が成り立ちます。

3. 最終的な答え

0an3<(23)n1a130 \le |a_n - 3| < (\frac{2}{3})^{n-1} |a_1 - 3|

「解析学」の関連問題

与えられた二つの2階線形常微分方程式の初期値問題を解く問題です。 問題1: $y'' - 2y' + 2y = 0$, 初期条件: $y(0) = 1, y'(0) = 3$ 問題2: $y'' + ...

常微分方程式初期値問題2階線形常微分方程式
2025/7/24

与えられた2つの関数 $f(\theta) = 2\cos^2\theta - 2\sin\theta$ と $g(\theta) = \sin\theta - \cos\theta - 1$ につい...

三角関数加法定理三角関数の合成方程式近似値
2025/7/24

問題は2つあります。 (1) 領域Dにおいて、常に $f_x(x, y) = a$, $f_y(x, y) = b$ (a, bは定数) ならば、$f(x, y) = ax + by + c$ (cは...

偏微分偏積分多変数関数積分定数
2025/7/24

2つの問題があります。 問題1:領域 $D$ で常に $f_x(x, y) = a$, $f_y(x, y) = b$ ($a, b$ は定数) ならば $f(x, y) = ax + by + c$...

偏微分積分多変数関数偏導関数勾配
2025/7/24

与えられた偏導関数から元の関数を求める問題です。 問題1: 領域Dにおいて、$f_x(x,y) = a$、$f_y(x,y) = b$($a, b$は定数)のとき、$f(x,y) = ax + by ...

偏微分積分偏導関数多変数関数
2025/7/24

2つの曲線 $y = \sin x$ と $y = \sin 2x$ で、区間 $\frac{\pi}{3} \le x \le \pi$ で囲まれた部分を、$x$軸の周りに1回転させてできる立体の体...

積分体積三角関数定積分
2025/7/24

ある物体の温度 $T$ と周囲の温度 $T_0$ の関係が、微分方程式 $\frac{dT}{dt} = -k(T - T_0)$ で与えられる。ここで、$k$ は定数である。$100^\circ\t...

微分方程式指数関数熱力学変数分離
2025/7/24

与えられた極限 $\lim_{n \to \infty} \left( \frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \cdo...

極限区分求積法定積分arctan
2025/7/24

次の極限値を求めよ。 $\lim_{n \to \infty} (\frac{n}{n^2} + \frac{n}{n^2+1^2} + \frac{n}{n^2+2^2} + \cdots + \f...

極限リーマン和積分arctan
2025/7/24

関数 $f(x) = x^2 \log x$ の増減、極値、グラフの凹凸、変曲点を調べ、グラフの概形を描く。

関数の増減極値グラフの凹凸変曲点対数関数微分
2025/7/24