与えられた連立不等式 $\begin{cases} 2x + 1 \geq x - 7 \\ 3x - 4 < x - 2 \end{cases}$ を解き、$x$ の範囲を求める問題です。
2025/7/7
1. 問題の内容
与えられた連立不等式
$\begin{cases}
2x + 1 \geq x - 7 \\
3x - 4 < x - 2
\end{cases}$
を解き、 の範囲を求める問題です。
2. 解き方の手順
まず、それぞれの不等式を個別に解きます。
(1)
を左辺に、定数を右辺に移項すると、
(2)
を左辺に、定数を右辺に移項すると、
次に、(1) と (2) で求めた の範囲を連立させます。
かつ より、 となります。