関数 $y = \frac{\log(x^2 + x)}{\log(x+1)}$ を微分せよ。解析学微分対数関数合成関数商の微分公式2025/7/71. 問題の内容関数 y=log(x2+x)log(x+1)y = \frac{\log(x^2 + x)}{\log(x+1)}y=log(x+1)log(x2+x) を微分せよ。2. 解き方の手順商の微分公式を用いる。すなわち、y=uvy = \frac{u}{v}y=vuのときdydx=u′v−uv′v2\frac{dy}{dx} = \frac{u'v - uv'}{v^2}dxdy=v2u′v−uv′である。ここで、u=log(x2+x)u = \log(x^2 + x)u=log(x2+x)v=log(x+1)v = \log(x+1)v=log(x+1)とおく。まず、uuuを微分する。対数関数の微分公式と合成関数の微分公式より、u′=ddxlog(x2+x)=2x+1x2+x=2x+1x(x+1)u' = \frac{d}{dx}\log(x^2 + x) = \frac{2x + 1}{x^2 + x} = \frac{2x + 1}{x(x+1)}u′=dxdlog(x2+x)=x2+x2x+1=x(x+1)2x+1次に、vvvを微分する。同様に、v′=ddxlog(x+1)=1x+1v' = \frac{d}{dx}\log(x+1) = \frac{1}{x+1}v′=dxdlog(x+1)=x+11したがって、y′=u′v−uv′v2=2x+1x(x+1)log(x+1)−log(x2+x)1x+1(log(x+1))2y' = \frac{u'v - uv'}{v^2} = \frac{\frac{2x+1}{x(x+1)}\log(x+1) - \log(x^2+x)\frac{1}{x+1}}{(\log(x+1))^2}y′=v2u′v−uv′=(log(x+1))2x(x+1)2x+1log(x+1)−log(x2+x)x+11y′=2x+1x(x+1)log(x+1)−log(x(x+1))x+1(log(x+1))2y' = \frac{\frac{2x+1}{x(x+1)}\log(x+1) - \frac{\log(x(x+1))}{x+1}}{(\log(x+1))^2}y′=(log(x+1))2x(x+1)2x+1log(x+1)−x+1log(x(x+1))y′=(2x+1)log(x+1)x(x+1)−log(x(x+1))x+1(log(x+1))2y' = \frac{\frac{(2x+1)\log(x+1)}{x(x+1)} - \frac{\log(x(x+1))}{x+1}}{(\log(x+1))^2}y′=(log(x+1))2x(x+1)(2x+1)log(x+1)−x+1log(x(x+1))y′=(2x+1)log(x+1)−xlog(x(x+1))x(x+1)(log(x+1))2y' = \frac{\frac{(2x+1)\log(x+1) - x \log(x(x+1))}{x(x+1)}}{(\log(x+1))^2}y′=(log(x+1))2x(x+1)(2x+1)log(x+1)−xlog(x(x+1))y′=(2x+1)log(x+1)−xlog(x(x+1))x(x+1)(log(x+1))2y' = \frac{(2x+1)\log(x+1) - x \log(x(x+1))}{x(x+1)(\log(x+1))^2}y′=x(x+1)(log(x+1))2(2x+1)log(x+1)−xlog(x(x+1))3. 最終的な答えdydx=(2x+1)log(x+1)−xlog(x2+x)x(x+1)(log(x+1))2\frac{dy}{dx} = \frac{(2x+1)\log(x+1) - x \log(x^2+x)}{x(x+1)(\log(x+1))^2}dxdy=x(x+1)(log(x+1))2(2x+1)log(x+1)−xlog(x2+x)