以下の極限値を求めよ。 $\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}}$解析学極限数列有理化2025/7/81. 問題の内容以下の極限値を求めよ。limn→∞1n2+2n−n2−2n\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}}limn→∞n2+2n−n2−2n12. 解き方の手順まず、分母を有理化します。分母と分子に n2+2n+n2−2n\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}n2+2n+n2−2n を掛けます。limn→∞1n2+2n−n2−2n=limn→∞n2+2n+n2−2n(n2+2n−n2−2n)(n2+2n+n2−2n)\lim_{n \to \infty} \frac{1}{\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n}} = \lim_{n \to \infty} \frac{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}}{(\sqrt{n^2 + 2n} - \sqrt{n^2 - 2n})(\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n})}limn→∞n2+2n−n2−2n1=limn→∞(n2+2n−n2−2n)(n2+2n+n2−2n)n2+2n+n2−2nlimn→∞n2+2n+n2−2n(n2+2n)−(n2−2n)=limn→∞n2+2n+n2−2n4n\lim_{n \to \infty} \frac{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}}{(n^2 + 2n) - (n^2 - 2n)} = \lim_{n \to \infty} \frac{\sqrt{n^2 + 2n} + \sqrt{n^2 - 2n}}{4n}limn→∞(n2+2n)−(n2−2n)n2+2n+n2−2n=limn→∞4nn2+2n+n2−2n分子と分母を nnn で割ります。limn→∞1+2n+1−2n4\lim_{n \to \infty} \frac{\sqrt{1 + \frac{2}{n}} + \sqrt{1 - \frac{2}{n}}}{4}limn→∞41+n2+1−n2n→∞n \to \inftyn→∞ のとき、 2n→0\frac{2}{n} \to 0n2→0 なので、limn→∞1+2n+1−2n4=1+0+1−04=1+14=24=12\lim_{n \to \infty} \frac{\sqrt{1 + \frac{2}{n}} + \sqrt{1 - \frac{2}{n}}}{4} = \frac{\sqrt{1 + 0} + \sqrt{1 - 0}}{4} = \frac{1 + 1}{4} = \frac{2}{4} = \frac{1}{2}limn→∞41+n2+1−n2=41+0+1−0=41+1=42=213. 最終的な答え12\frac{1}{2}21