関数 $y = \frac{1}{\log(x^2 + 1)}$ を微分しなさい。ここで、$\log$ は自然対数とします。解析学微分合成関数の微分商の微分自然対数指数関数2025/7/8## 問題71. 問題の内容関数 y=1log(x2+1)y = \frac{1}{\log(x^2 + 1)}y=log(x2+1)1 を微分しなさい。ここで、log\loglog は自然対数とします。2. 解き方の手順まず、y=1log(x2+1)y = \frac{1}{\log(x^2 + 1)}y=log(x2+1)1 を y=(log(x2+1))−1y = (\log(x^2 + 1))^{-1}y=(log(x2+1))−1 と書き換えます。次に、合成関数の微分を行います。外側の関数を u−1u^{-1}u−1、内側の関数を u=log(x2+1)u = \log(x^2 + 1)u=log(x2+1) とします。y′=ddx(log(x2+1))−1=ddu(u−1)⋅dudxy' = \frac{d}{dx} (\log(x^2 + 1))^{-1} = \frac{d}{du} (u^{-1}) \cdot \frac{du}{dx}y′=dxd(log(x2+1))−1=dud(u−1)⋅dxduddu(u−1)=−u−2=−1u2=−1(log(x2+1))2\frac{d}{du} (u^{-1}) = -u^{-2} = -\frac{1}{u^2} = -\frac{1}{(\log(x^2 + 1))^2}dud(u−1)=−u−2=−u21=−(log(x2+1))21dudx=ddx(log(x2+1))=1x2+1⋅ddx(x2+1)=1x2+1⋅(2x)=2xx2+1\frac{du}{dx} = \frac{d}{dx} (\log(x^2 + 1)) = \frac{1}{x^2 + 1} \cdot \frac{d}{dx} (x^2 + 1) = \frac{1}{x^2 + 1} \cdot (2x) = \frac{2x}{x^2 + 1}dxdu=dxd(log(x2+1))=x2+11⋅dxd(x2+1)=x2+11⋅(2x)=x2+12xしたがって、y′=−1(log(x2+1))2⋅2xx2+1=−2x(x2+1)(log(x2+1))2y' = -\frac{1}{(\log(x^2 + 1))^2} \cdot \frac{2x}{x^2 + 1} = -\frac{2x}{(x^2 + 1) (\log(x^2 + 1))^2}y′=−(log(x2+1))21⋅x2+12x=−(x2+1)(log(x2+1))22x3. 最終的な答えy′=−2x(x2+1)(log(x2+1))2y' = -\frac{2x}{(x^2 + 1) (\log(x^2 + 1))^2}y′=−(x2+1)(log(x2+1))22x## 問題81. 問題の内容関数 y=log(1−x2)e2xy = \frac{\log(1 - x^2)}{e^{2x}}y=e2xlog(1−x2) を微分しなさい。ここで、log\loglog は自然対数とします。2. 解き方の手順商の微分公式を使います。y=uvy = \frac{u}{v}y=vu のとき、y′=u′v−uv′v2y' = \frac{u'v - uv'}{v^2}y′=v2u′v−uv′u=log(1−x2)u = \log(1 - x^2)u=log(1−x2), v=e2xv = e^{2x}v=e2xu′=11−x2⋅ddx(1−x2)=−2x1−x2u' = \frac{1}{1 - x^2} \cdot \frac{d}{dx}(1 - x^2) = \frac{-2x}{1 - x^2}u′=1−x21⋅dxd(1−x2)=1−x2−2xv′=2e2xv' = 2e^{2x}v′=2e2xしたがって、y′=−2x1−x2⋅e2x−log(1−x2)⋅2e2x(e2x)2y' = \frac{\frac{-2x}{1 - x^2} \cdot e^{2x} - \log(1 - x^2) \cdot 2e^{2x}}{(e^{2x})^2}y′=(e2x)21−x2−2x⋅e2x−log(1−x2)⋅2e2xy′=e2x(−2x1−x2−2log(1−x2))e4xy' = \frac{e^{2x} (\frac{-2x}{1 - x^2} - 2\log(1 - x^2))}{e^{4x}}y′=e4xe2x(1−x2−2x−2log(1−x2))y′=−2x1−x2−2log(1−x2)e2xy' = \frac{\frac{-2x}{1 - x^2} - 2\log(1 - x^2)}{e^{2x}}y′=e2x1−x2−2x−2log(1−x2)y′=−2x−2(1−x2)log(1−x2)(1−x2)e2xy' = \frac{-2x - 2(1-x^2)\log(1-x^2)}{(1 - x^2) e^{2x}}y′=(1−x2)e2x−2x−2(1−x2)log(1−x2)3. 最終的な答えy′=−2x−2(1−x2)log(1−x2)(1−x2)e2xy' = \frac{-2x - 2(1-x^2)\log(1-x^2)}{(1 - x^2) e^{2x}}y′=(1−x2)e2x−2x−2(1−x2)log(1−x2)