$\sum_{k=1}^{n} (k-1)(k-5)$ を計算する問題です。代数学数列シグマ和公式2025/7/81. 問題の内容∑k=1n(k−1)(k−5)\sum_{k=1}^{n} (k-1)(k-5)∑k=1n(k−1)(k−5) を計算する問題です。2. 解き方の手順まず、(k−1)(k−5)(k-1)(k-5)(k−1)(k−5) を展開します。(k−1)(k−5)=k2−6k+5(k-1)(k-5) = k^2 - 6k + 5(k−1)(k−5)=k2−6k+5したがって、与えられた和は次のようになります。∑k=1n(k2−6k+5)=∑k=1nk2−6∑k=1nk+5∑k=1n1\sum_{k=1}^{n} (k^2 - 6k + 5) = \sum_{k=1}^{n} k^2 - 6 \sum_{k=1}^{n} k + 5 \sum_{k=1}^{n} 1∑k=1n(k2−6k+5)=∑k=1nk2−6∑k=1nk+5∑k=1n1ここで、以下の公式を使用します。∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nこれらの公式を代入すると、∑k=1nk2−6∑k=1nk+5∑k=1n1=n(n+1)(2n+1)6−6n(n+1)2+5n\sum_{k=1}^{n} k^2 - 6 \sum_{k=1}^{n} k + 5 \sum_{k=1}^{n} 1 = \frac{n(n+1)(2n+1)}{6} - 6\frac{n(n+1)}{2} + 5n∑k=1nk2−6∑k=1nk+5∑k=1n1=6n(n+1)(2n+1)−62n(n+1)+5n=n(n+1)(2n+1)6−3n(n+1)+5n= \frac{n(n+1)(2n+1)}{6} - 3n(n+1) + 5n=6n(n+1)(2n+1)−3n(n+1)+5n=n(n+1)(2n+1)−18n(n+1)+30n6= \frac{n(n+1)(2n+1) - 18n(n+1) + 30n}{6}=6n(n+1)(2n+1)−18n(n+1)+30n=n[(n+1)(2n+1)−18(n+1)+30]6= \frac{n[(n+1)(2n+1) - 18(n+1) + 30]}{6}=6n[(n+1)(2n+1)−18(n+1)+30]=n[2n2+3n+1−18n−18+30]6= \frac{n[2n^2+3n+1 - 18n - 18 + 30]}{6}=6n[2n2+3n+1−18n−18+30]=n[2n2−15n+13]6= \frac{n[2n^2 - 15n + 13]}{6}=6n[2n2−15n+13]=2n3−15n2+13n6= \frac{2n^3 - 15n^2 + 13n}{6}=62n3−15n2+13n3. 最終的な答え2n3−15n2+13n6\frac{2n^3 - 15n^2 + 13n}{6}62n3−15n2+13n