定積分 $\int_{0}^{2\sqrt{2}} \frac{dx}{8+x^2}$ を計算します。解析学定積分積分arctan有理化2025/7/81. 問題の内容定積分 ∫022dx8+x2\int_{0}^{2\sqrt{2}} \frac{dx}{8+x^2}∫0228+x2dx を計算します。2. 解き方の手順∫1a2+x2dx=1aarctanxa+C\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan{\frac{x}{a}} + C∫a2+x21dx=a1arctanax+Cの公式を利用します。今回の問題ではa2=8a^2 = 8a2=8、つまりa=8=22a = \sqrt{8} = 2\sqrt{2}a=8=22です。よって、∫18+x2dx=122arctanx22+C\int \frac{1}{8 + x^2} dx = \frac{1}{2\sqrt{2}} \arctan{\frac{x}{2\sqrt{2}}} + C∫8+x21dx=221arctan22x+C定積分の計算を行います。∫022dx8+x2=122[arctanx22]022\int_{0}^{2\sqrt{2}} \frac{dx}{8+x^2} = \frac{1}{2\sqrt{2}} \left[ \arctan{\frac{x}{2\sqrt{2}}} \right]_0^{2\sqrt{2}}∫0228+x2dx=221[arctan22x]022=122(arctan2222−arctan022)= \frac{1}{2\sqrt{2}} \left( \arctan{\frac{2\sqrt{2}}{2\sqrt{2}}} - \arctan{\frac{0}{2\sqrt{2}}} \right)=221(arctan2222−arctan220)=122(arctan1−arctan0)= \frac{1}{2\sqrt{2}} \left( \arctan{1} - \arctan{0} \right)=221(arctan1−arctan0)arctan1=π4\arctan{1} = \frac{\pi}{4}arctan1=4π、arctan0=0\arctan{0} = 0arctan0=0なので、=122(π4−0)= \frac{1}{2\sqrt{2}} \left( \frac{\pi}{4} - 0 \right)=221(4π−0)=π82= \frac{\pi}{8\sqrt{2}}=82π分母を有理化します。π82=π2822=π216\frac{\pi}{8\sqrt{2}} = \frac{\pi \sqrt{2}}{8\sqrt{2} \sqrt{2}} = \frac{\pi \sqrt{2}}{16}82π=822π2=16π23. 最終的な答えπ216\frac{\pi\sqrt{2}}{16}16π2