2次方程式 $x^2 - 4x - 2 = 0$ の2つの解を $a$, $b$ ($a < b$) とするとき、$a$ と $b$ の値をそれぞれ求める問題です。

代数学二次方程式解の公式平方根
2025/7/8

1. 問題の内容

2次方程式 x24x2=0x^2 - 4x - 2 = 0 の2つの解を aa, bb (a<ba < b) とするとき、aabb の値をそれぞれ求める問題です。

2. 解き方の手順

2次方程式 x24x2=0x^2 - 4x - 2 = 0 を解くために、解の公式を利用します。解の公式は、一般に ax2+bx+c=0ax^2 + bx + c = 0 の解を求める際に使用され、次のように表されます。
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
この問題では、a=1a = 1, b=4b = -4, c=2c = -2 ですので、解の公式に代入します。
x=(4)±(4)24(1)(2)2(1)x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(1)(-2)}}{2(1)}
x=4±16+82x = \frac{4 \pm \sqrt{16 + 8}}{2}
x=4±242x = \frac{4 \pm \sqrt{24}}{2}
24\sqrt{24}4×6=26\sqrt{4 \times 6} = 2\sqrt{6} と変形できます。
x=4±262x = \frac{4 \pm 2\sqrt{6}}{2}
x=2±6x = 2 \pm \sqrt{6}
したがって、2つの解は 262 - \sqrt{6}2+62 + \sqrt{6} です。問題文で a<ba < b と与えられているので、a=26a = 2 - \sqrt{6}b=2+6b = 2 + \sqrt{6} となります。

3. 最終的な答え

a=26a = 2 - \sqrt{6}
b=2+6b = 2 + \sqrt{6}

「代数学」の関連問題

2次関数 $f(x) = x^2 + 2ax + b$ があり、$y=f(x)$ のグラフは点 $(1, 8)$ を通る。ただし、$a, b$ は実数の定数で、$a>0$ とする。 (1) $b$ を...

二次関数二次方程式最大値最小値
2025/7/8

二次方程式 $6x^2 + 11x + 5 = 0$ を解く問題です。

二次方程式因数分解解の公式
2025/7/8

2次関数 $y = -2x^2 + 4ax - 6a - 5$ (aは正の実数) の $0 \le x \le 4$ における最大値を $M(a)$、最小値を $m(a)$ とする。 (1) $0 <...

二次関数最大値最小値場合分け
2025/7/8

数列 $6, 9, 3, 15, -9, \dots$ の一般項を求めよ。この数列の階差数列が等比数列になっている。

数列一般項階差数列等比数列シグマ等比数列の和
2025/7/8

数列 $\{a_n\}$ が $4, 7, 13, 22, 34, ...$ で与えられているとき、この数列の一般項を求める。

数列一般項階差数列等差数列シグマ
2025/7/8

与えられた式 $(x+y)^2 - (x+y) - 6$ を因数分解してください。

因数分解多項式二次式
2025/7/8

次の複素数の計算問題を解きます。 (1) $(2+i) + (3-2i)$ (2) $(2+i)(2-i)$ (3) $\sqrt{-2}\sqrt{-8}$ (4) $\frac{1-\sqrt{-...

複素数複素数の計算虚数四則演算
2025/7/8

二次方程式 $6x^2 + 11x + 5 = 0$ を解く問題です。

二次方程式因数分解方程式
2025/7/8

次の3つの方程式を解きます。 (1) $(x+5)(x-4) = 0$ (2) $x^2 - 10x + 21 = 0$ (3) $x^2 + 4x - 32 = 0$

二次方程式因数分解方程式
2025/7/8

与えられた方程式 $x^2 - 8 = 0$ を解き、$x$ の値を求めます。

二次方程式平方根方程式
2025/7/8