与えられた2つの命題の真偽を判定する問題です。 * 命題1: $n$ が3の倍数ならば、$n^2$ も3の倍数である。 * 命題2: 自然数 $n$ が素数ならば、$n+1$ は素数ではない。

数論命題真偽素数倍数整数の性質
2025/7/8

1. 問題の内容

与えられた2つの命題の真偽を判定する問題です。
* 命題1: nn が3の倍数ならば、n2n^2 も3の倍数である。
* 命題2: 自然数 nn が素数ならば、n+1n+1 は素数ではない。

2. 解き方の手順

命題1の真偽について考えます。
nn が3の倍数であるとき、n=3kn = 3k (kは整数) と表すことができます。
このとき、n2=(3k)2=9k2=3(3k2)n^2 = (3k)^2 = 9k^2 = 3(3k^2) となり、n2n^2 は3の倍数となります。したがって、命題1は真です。
命題2の真偽について考えます。
nn が素数であるとき、n+1n+1 が素数でないかどうかを調べます。
n=2n=2 のとき、n+1=3n+1=3 となり、これは素数です。したがって、この命題は偽です。

3. 最終的な答え

命題1: 真
命題2: 偽

「数論」の関連問題

ルジャンドル記号 $\left( \frac{29}{131} \right)$ の値を、与えられた手順に従って計算し、空欄①から⑤に当てはまる数を求める問題です。

ルジャンドル記号平方剰余の相互法則合同算術
2025/7/8

実数 $a$ が与えられたとき、「任意の自然数 $n$ に対し、常に $\frac{m}{n} \le a$ を満たす自然数 $m$ が存在する」という命題が、$a \ge 1$ であるための何条件で...

命題自然数必要十分条件不等式床関数
2025/7/8

$\sqrt{53-2n}$ が整数となるような自然数 $n$ の個数を求める問題です。

平方根整数の性質平方数
2025/7/8

$n$ は自然数とする。$\sqrt{\frac{3024}{n}}$ が自然数となるような $n$ をすべて求めよ。

平方根約数素因数分解整数の性質
2025/7/8

7進法で表すと $abc_{(7)}$ となり、5進法で表すと $bca_{(5)}$ となる数を10進法で表す。

進法整数方程式数の表現
2025/7/8

すべての自然数 $n$ に対して、$2^{n-1} + 3^{3n-2} + 7^{n-1}$ が5の倍数であることを数学的帰納法を用いて証明する。

数学的帰納法整数の性質倍数
2025/7/8

自然数 $n$ に対して、「$n^2$ が 9 の倍数でないならば、$n$ は 3 の倍数でない」という命題を、対偶を利用して証明する問題です。

対偶命題整数の性質倍数証明
2025/7/7

与えられた方程式 $x^n + y^n = z^n$ について、解を求める問題です。

フェルマーの最終定理整数論方程式べき乗
2025/7/7

$n$ が8の約数であることは、$n$ が16の約数であるための何条件か答える問題です。

約数条件必要条件十分条件
2025/7/7

9進数で $abc_{(9)}$ と表される数が、7進数で $bca_{(7)}$ と表される。この条件を満たす $(a, b, c)$ の組をすべて求め、それぞれの数を10進数で表す。

進数数の表現方程式整数
2025/7/7