与えられた数列の和を計算します。具体的には、$\sum_{k=1}^{n} (2k-1)(k+3)$ を計算します。代数学数列シグマ展開計算2025/7/81. 問題の内容与えられた数列の和を計算します。具体的には、∑k=1n(2k−1)(k+3)\sum_{k=1}^{n} (2k-1)(k+3)∑k=1n(2k−1)(k+3) を計算します。2. 解き方の手順まず、(2k−1)(k+3)(2k-1)(k+3)(2k−1)(k+3) を展開します。(2k−1)(k+3)=2k2+6k−k−3=2k2+5k−3(2k-1)(k+3) = 2k^2 + 6k - k - 3 = 2k^2 + 5k - 3(2k−1)(k+3)=2k2+6k−k−3=2k2+5k−3次に、∑k=1n(2k2+5k−3)\sum_{k=1}^{n} (2k^2 + 5k - 3)∑k=1n(2k2+5k−3) を計算します。∑k=1n(2k2+5k−3)=2∑k=1nk2+5∑k=1nk−3∑k=1n1\sum_{k=1}^{n} (2k^2 + 5k - 3) = 2\sum_{k=1}^{n} k^2 + 5\sum_{k=1}^{n} k - 3\sum_{k=1}^{n} 1∑k=1n(2k2+5k−3)=2∑k=1nk2+5∑k=1nk−3∑k=1n1∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n1=n\sum_{k=1}^{n} 1 = n∑k=1n1=nしたがって、2∑k=1nk2=2⋅n(n+1)(2n+1)6=n(n+1)(2n+1)32\sum_{k=1}^{n} k^2 = 2 \cdot \frac{n(n+1)(2n+1)}{6} = \frac{n(n+1)(2n+1)}{3}2∑k=1nk2=2⋅6n(n+1)(2n+1)=3n(n+1)(2n+1)5∑k=1nk=5⋅n(n+1)2=5n(n+1)25\sum_{k=1}^{n} k = 5 \cdot \frac{n(n+1)}{2} = \frac{5n(n+1)}{2}5∑k=1nk=5⋅2n(n+1)=25n(n+1)3∑k=1n1=3n3\sum_{k=1}^{n} 1 = 3n3∑k=1n1=3n∑k=1n(2k2+5k−3)=n(n+1)(2n+1)3+5n(n+1)2−3n\sum_{k=1}^{n} (2k^2 + 5k - 3) = \frac{n(n+1)(2n+1)}{3} + \frac{5n(n+1)}{2} - 3n∑k=1n(2k2+5k−3)=3n(n+1)(2n+1)+25n(n+1)−3n共通分母を6にして整理します。n(n+1)(2n+1)3+5n(n+1)2−3n=2n(n+1)(2n+1)+15n(n+1)−18n6\frac{n(n+1)(2n+1)}{3} + \frac{5n(n+1)}{2} - 3n = \frac{2n(n+1)(2n+1) + 15n(n+1) - 18n}{6}3n(n+1)(2n+1)+25n(n+1)−3n=62n(n+1)(2n+1)+15n(n+1)−18n=n(2(n+1)(2n+1)+15(n+1)−18)6= \frac{n(2(n+1)(2n+1) + 15(n+1) - 18)}{6}=6n(2(n+1)(2n+1)+15(n+1)−18)=n(2(2n2+3n+1)+15n+15−18)6= \frac{n(2(2n^2+3n+1) + 15n + 15 - 18)}{6}=6n(2(2n2+3n+1)+15n+15−18)=n(4n2+6n+2+15n−3)6= \frac{n(4n^2 + 6n + 2 + 15n - 3)}{6}=6n(4n2+6n+2+15n−3)=n(4n2+21n−1)6= \frac{n(4n^2 + 21n - 1)}{6}=6n(4n2+21n−1)=4n3+21n2−n6= \frac{4n^3 + 21n^2 - n}{6}=64n3+21n2−n3. 最終的な答え4n3+21n2−n6\frac{4n^3 + 21n^2 - n}{6}64n3+21n2−n