与えられた6つの関数をそれぞれ微分せよ。 (1) $y = \sin^{-1}(4x)$ (2) $y = \cos^{-1}(\frac{x}{4})$ (3) $y = \tan^{-1}(\frac{3}{4}x)$ (4) $y = \sin^{-1}(\frac{2}{x})$ ($x \ge 2$) (5) $y = \frac{\sin^{-1}x}{\cos^{-1}x}$ (6) $y = \sqrt{\tan^{-1}x}$

解析学微分逆三角関数合成関数の微分
2025/7/8

1. 問題の内容

与えられた6つの関数をそれぞれ微分せよ。
(1) y=sin1(4x)y = \sin^{-1}(4x)
(2) y=cos1(x4)y = \cos^{-1}(\frac{x}{4})
(3) y=tan1(34x)y = \tan^{-1}(\frac{3}{4}x)
(4) y=sin1(2x)y = \sin^{-1}(\frac{2}{x}) (x2x \ge 2)
(5) y=sin1xcos1xy = \frac{\sin^{-1}x}{\cos^{-1}x}
(6) y=tan1xy = \sqrt{\tan^{-1}x}

2. 解き方の手順

(1) y=sin1(4x)y = \sin^{-1}(4x) の微分
ddxsin1u=11u2dudx\frac{d}{dx}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} を用いる。u=4xu = 4x なので、dudx=4\frac{du}{dx} = 4
dydx=11(4x)24=4116x2\frac{dy}{dx} = \frac{1}{\sqrt{1-(4x)^2}} \cdot 4 = \frac{4}{\sqrt{1-16x^2}}
(2) y=cos1(x4)y = \cos^{-1}(\frac{x}{4}) の微分
ddxcos1u=11u2dudx\frac{d}{dx}\cos^{-1}u = -\frac{1}{\sqrt{1-u^2}} \frac{du}{dx} を用いる。u=x4u = \frac{x}{4} なので、dudx=14\frac{du}{dx} = \frac{1}{4}
dydx=11(x4)214=141x216=1416x216=1416x24=116x2\frac{dy}{dx} = -\frac{1}{\sqrt{1-(\frac{x}{4})^2}} \cdot \frac{1}{4} = -\frac{1}{4\sqrt{1-\frac{x^2}{16}}} = -\frac{1}{4\sqrt{\frac{16-x^2}{16}}} = -\frac{1}{4\cdot\frac{\sqrt{16-x^2}}{4}} = -\frac{1}{\sqrt{16-x^2}}
(3) y=tan1(34x)y = \tan^{-1}(\frac{3}{4}x) の微分
ddxtan1u=11+u2dudx\frac{d}{dx}\tan^{-1}u = \frac{1}{1+u^2} \frac{du}{dx} を用いる。u=34xu = \frac{3}{4}x なので、dudx=34\frac{du}{dx} = \frac{3}{4}
dydx=11+(34x)234=34(1+916x2)=34+94x2=1216+9x2\frac{dy}{dx} = \frac{1}{1+(\frac{3}{4}x)^2} \cdot \frac{3}{4} = \frac{3}{4(1+\frac{9}{16}x^2)} = \frac{3}{4+\frac{9}{4}x^2} = \frac{12}{16+9x^2}
(4) y=sin1(2x)y = \sin^{-1}(\frac{2}{x}) の微分
ddxsin1u=11u2dudx\frac{d}{dx}\sin^{-1}u = \frac{1}{\sqrt{1-u^2}} \frac{du}{dx} を用いる。u=2xu = \frac{2}{x} なので、dudx=2x2\frac{du}{dx} = -\frac{2}{x^2}
dydx=11(2x)2(2x2)=2x214x2=2x2x24x2=2x2x24x=2x2x24x=2xx24\frac{dy}{dx} = \frac{1}{\sqrt{1-(\frac{2}{x})^2}} \cdot (-\frac{2}{x^2}) = -\frac{2}{x^2\sqrt{1-\frac{4}{x^2}}} = -\frac{2}{x^2\sqrt{\frac{x^2-4}{x^2}}} = -\frac{2}{x^2\cdot\frac{\sqrt{x^2-4}}{|x|}} = -\frac{2}{x^2\cdot\frac{\sqrt{x^2-4}}{x}} = -\frac{2}{x\sqrt{x^2-4}} (∵ x2x \ge 2 より x=x|x|=x)
(5) y=sin1xcos1xy = \frac{\sin^{-1}x}{\cos^{-1}x} の微分
ddxuv=vdudxudvdxv2\frac{d}{dx}\frac{u}{v} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} を用いる。u=sin1xu = \sin^{-1}x なので、dudx=11x2\frac{du}{dx} = \frac{1}{\sqrt{1-x^2}}v=cos1xv = \cos^{-1}x なので、dvdx=11x2\frac{dv}{dx} = -\frac{1}{\sqrt{1-x^2}}
dydx=cos1x11x2sin1x(11x2)(cos1x)2=cos1x+sin1x1x2(cos1x)2=cos1x+sin1x1x2(cos1x)2\frac{dy}{dx} = \frac{\cos^{-1}x\cdot\frac{1}{\sqrt{1-x^2}} - \sin^{-1}x\cdot(-\frac{1}{\sqrt{1-x^2}})}{(\cos^{-1}x)^2} = \frac{\frac{\cos^{-1}x + \sin^{-1}x}{\sqrt{1-x^2}}}{(\cos^{-1}x)^2} = \frac{\cos^{-1}x + \sin^{-1}x}{\sqrt{1-x^2}(\cos^{-1}x)^2}
sin1x+cos1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} であるので、
dydx=π21x2(cos1x)2=π21x2(cos1x)2\frac{dy}{dx} = \frac{\frac{\pi}{2}}{\sqrt{1-x^2}(\cos^{-1}x)^2} = \frac{\pi}{2\sqrt{1-x^2}(\cos^{-1}x)^2}
(6) y=tan1xy = \sqrt{\tan^{-1}x} の微分
ddxu=12ududx\frac{d}{dx}\sqrt{u} = \frac{1}{2\sqrt{u}}\frac{du}{dx} を用いる。u=tan1xu = \tan^{-1}x なので、dudx=11+x2\frac{du}{dx} = \frac{1}{1+x^2}
dydx=12tan1x11+x2=12(1+x2)tan1x\frac{dy}{dx} = \frac{1}{2\sqrt{\tan^{-1}x}} \cdot \frac{1}{1+x^2} = \frac{1}{2(1+x^2)\sqrt{\tan^{-1}x}}

3. 最終的な答え

(1) dydx=4116x2\frac{dy}{dx} = \frac{4}{\sqrt{1-16x^2}}
(2) dydx=116x2\frac{dy}{dx} = -\frac{1}{\sqrt{16-x^2}}
(3) dydx=1216+9x2\frac{dy}{dx} = \frac{12}{16+9x^2}
(4) dydx=2xx24\frac{dy}{dx} = -\frac{2}{x\sqrt{x^2-4}}
(5) dydx=π21x2(cos1x)2\frac{dy}{dx} = \frac{\pi}{2\sqrt{1-x^2}(\cos^{-1}x)^2}
(6) dydx=12(1+x2)tan1x\frac{dy}{dx} = \frac{1}{2(1+x^2)\sqrt{\tan^{-1}x}}