$\sin \frac{5}{12}\pi$ の値を求める問題です。解析学三角関数加法定理角度2025/7/91. 問題の内容sin512π\sin \frac{5}{12}\pisin125π の値を求める問題です。2. 解き方の手順512π\frac{5}{12}\pi125π を既知の角度の和または差で表します。512π=212π+312π=16π+14π=π6+π4\frac{5}{12}\pi = \frac{2}{12}\pi + \frac{3}{12}\pi = \frac{1}{6}\pi + \frac{1}{4}\pi = \frac{\pi}{6} + \frac{\pi}{4}125π=122π+123π=61π+41π=6π+4πsin(α+β)=sinαcosβ+cosαsinβ\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \betasin(α+β)=sinαcosβ+cosαsinβ の公式を利用します。sin512π=sin(π6+π4)=sinπ6cosπ4+cosπ6sinπ4\sin \frac{5}{12}\pi = \sin(\frac{\pi}{6} + \frac{\pi}{4}) = \sin \frac{\pi}{6} \cos \frac{\pi}{4} + \cos \frac{\pi}{6} \sin \frac{\pi}{4}sin125π=sin(6π+4π)=sin6πcos4π+cos6πsin4πsinπ6=12\sin \frac{\pi}{6} = \frac{1}{2}sin6π=21, cosπ6=32\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}cos6π=23, sinπ4=22\sin \frac{\pi}{4} = \frac{\sqrt{2}}{2}sin4π=22, cosπ4=22\cos \frac{\pi}{4} = \frac{\sqrt{2}}{2}cos4π=22sin512π=12⋅22+32⋅22=24+64=2+64\sin \frac{5}{12}\pi = \frac{1}{2} \cdot \frac{\sqrt{2}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{4} + \frac{\sqrt{6}}{4} = \frac{\sqrt{2} + \sqrt{6}}{4}sin125π=21⋅22+23⋅22=42+46=42+63. 最終的な答え2+64\frac{\sqrt{2} + \sqrt{6}}{4}42+6