$\cos{\frac{5}{12}\pi}$ の値を求める問題です。解析学三角関数加法定理cos角度2025/7/91. 問題の内容cos512π\cos{\frac{5}{12}\pi}cos125π の値を求める問題です。2. 解き方の手順512π\frac{5}{12}\pi125π は、π4\frac{\pi}{4}4π と π6\frac{\pi}{6}6π の和として表すことができます。512π=312π+212π=π4+π6\frac{5}{12}\pi = \frac{3}{12}\pi + \frac{2}{12}\pi = \frac{\pi}{4} + \frac{\pi}{6}125π=123π+122π=4π+6πしたがって、cos512π=cos(π4+π6)\cos{\frac{5}{12}\pi} = \cos{(\frac{\pi}{4} + \frac{\pi}{6})}cos125π=cos(4π+6π) となります。cos(α+β)=cosαcosβ−sinαsinβ\cos{(\alpha + \beta)} = \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}cos(α+β)=cosαcosβ−sinαsinβ の加法定理を用いて、cos(π4+π6)=cosπ4cosπ6−sinπ4sinπ6\cos{(\frac{\pi}{4} + \frac{\pi}{6})} = \cos{\frac{\pi}{4}}\cos{\frac{\pi}{6}} - \sin{\frac{\pi}{4}}\sin{\frac{\pi}{6}}cos(4π+6π)=cos4πcos6π−sin4πsin6πcosπ4=22\cos{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}cos4π=22, cosπ6=32\cos{\frac{\pi}{6}} = \frac{\sqrt{3}}{2}cos6π=23, sinπ4=22\sin{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}sin4π=22, sinπ6=12\sin{\frac{\pi}{6}} = \frac{1}{2}sin6π=21 を代入します。cos(π4+π6)=22⋅32−22⋅12\cos{(\frac{\pi}{4} + \frac{\pi}{6})} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}cos(4π+6π)=22⋅23−22⋅21cos(π4+π6)=64−24\cos{(\frac{\pi}{4} + \frac{\pi}{6})} = \frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}cos(4π+6π)=46−42cos(π4+π6)=6−24\cos{(\frac{\pi}{4} + \frac{\pi}{6})} = \frac{\sqrt{6} - \sqrt{2}}{4}cos(4π+6π)=46−23. 最終的な答え6−24\frac{\sqrt{6} - \sqrt{2}}{4}46−2