$\frac{1}{i}$ を計算し、簡略化してください。

代数学複素数共役複素数虚数単位計算
2025/7/9
## (4) の問題

1. 問題の内容

1i\frac{1}{i} を計算し、簡略化してください。

2. 解き方の手順

分母に虚数単位 ii があるので、分母を有理化します。そのため、分子と分母に ii の共役複素数である i-i を掛けます。
\frac{1}{i} = \frac{1}{i} \times \frac{-i}{-i}
= \frac{-i}{-i^2}
i2=1i^2 = -1 であるので、
\frac{-i}{-(-1)} = \frac{-i}{1} = -i

3. 最終的な答え

-i
## (7) の問題

1. 問題の内容

2i\overline{-2i} を計算し、簡略化してください。

2. 解き方の手順

複素数 z=a+biz=a+bi の共役複素数は z=abi\overline{z} = a - bi です。この問題では z=2i=02iz=-2i=0-2i なので、共役複素数は 2i=0(2i)=2i\overline{-2i} = 0-(-2i) = 2i となります。

3. 最終的な答え

2i

「代数学」の関連問題

$\frac{\sqrt{3n}}{5}$ が自然数となるような3桁の自然数 $n$ をすべて求める。

平方根整数不等式約数
2025/7/9

与えられた数式を簡略化します。 数式は $\sqrt{2} \left( \frac{x + \sqrt{2}}{\sqrt{2}} \right)$ です。

数式簡略化平方根分配法則約分
2025/7/9

与えられた関数 $y = \frac{x^2 + 2x + 2}{x + 1}$ を簡単にすることを目的とします。具体的にどのような操作を行うべきかは問題文からは不明ですが、ここでは与式を整理すること...

分数式式の簡約化多項式の除算
2025/7/9

$A$ が4次正方行列で、その行列式 $|A|$ が5であるとき、$|3{}^tA|$ の値を求めよ。

行列式行列転置行列スカラー倍
2025/7/9

秒速40mで真上に投げ上げられたボールの$x$秒後の高さ$y$mが、$y = -5x^2 + 40x$で表されるとき、ボールの高さが75m以上であるのは何秒後から何秒後かを求める問題です。

二次関数不等式因数分解物理
2025/7/9

与えられた不等式 $\frac{3\sqrt{2}}{4}x - 5\sqrt{2} > \frac{x+\sqrt{2}}{\sqrt{2}}$ を解く問題です。

不等式一次不等式式の計算平方根
2025/7/9

与えられた3つの2次方程式のグラフとx軸との共有点のx座標を求める問題です。つまり、各方程式に対して $y=0$ となる $x$ の値を求めます。

二次方程式解の公式因数分解グラフ
2025/7/9

次の6つの2次不等式を解きます。 (1) $x^2+2x-8>0$ (2) $x^2-3x+2<0$ (3) $x^2+6x+9>0$ (4) $x^2-10x+25<0$ (5) $x^2-4x+5...

二次不等式因数分解判別式二次関数
2025/7/9

2次関数 $y = x^2 - 2x + 3$ について、次の定義域における最大値と最小値を求めます。 (1) $-1 \le x \le 2$ (2) $-3 \le x \le 0$

二次関数最大値最小値平方完成定義域
2025/7/9

2次関数の最大値、最小値を求める問題です。 (1) $y = (x - 3)^2 + 2$ (2) $y = -3(x + 2)^2 - 5$ (3) $y = x^2 + 2x + 5$ (4) $...

二次関数最大値最小値平方完成
2025/7/9