4本の平行線と、それらに斜めに交わる3本の平行線があるとき、これらの平行線で囲まれる平行四辺形は全部で何個あるかを求める。

幾何学組み合わせ平行四辺形数え上げ$_nC_r$
2025/7/9
## 問題 65 の解答

1. 問題の内容

4本の平行線と、それらに斜めに交わる3本の平行線があるとき、これらの平行線で囲まれる平行四辺形は全部で何個あるかを求める。

2. 解き方の手順

平行四辺形を作るには、4本の平行線から2本を選び、3本の平行線から2本を選ぶ必要がある。
4本の平行線から2本を選ぶ組み合わせは 4C2_4C_2 で計算できる。
3本の平行線から2本を選ぶ組み合わせは 3C2_3C_2 で計算できる。
平行四辺形の総数は、これらの組み合わせの積で求められる。
4C2=4!2!(42)!=4!2!2!=4×32×1=6_4C_2 = \frac{4!}{2!(4-2)!} = \frac{4!}{2!2!} = \frac{4 \times 3}{2 \times 1} = 6
3C2=3!2!(32)!=3!2!1!=3×2×1(2×1)×1=3_3C_2 = \frac{3!}{2!(3-2)!} = \frac{3!}{2!1!} = \frac{3 \times 2 \times 1}{(2 \times 1) \times 1} = 3
平行四辺形の総数 = 4C2×3C2=6×3=18_4C_2 \times _3C_2 = 6 \times 3 = 18

3. 最終的な答え

18個

「幾何学」の関連問題

以下の3つの図形の直交座標表示から極座標表示を求める問題です。ただし、$a > 0$ は定数です。 (1) 連珠形: $(x^2 + y^2)^2 = 2a^2(x^2 - y^2)$ (2) 心臓形...

極座標座標変換曲線
2025/7/11

点A(2, -3)について、以下の点を求め、どの象限にあるか答える問題です。 (1) x軸に関して対称な点B (2) y軸に関して対称な点C (3) 原点に関して対称な点D

座標平面対称性象限
2025/7/11

点Qが直線 $y = 2x + 5$ 上を動くとき、線分OQを2:1に内分する点Pの軌跡を求めよ。ただし、Oは原点とする。

軌跡内分点直線
2025/7/11

2つの円の式が与えられています。 $x^2 + y^2 = 20$ … (1) $x^2 + y^2 - 9x + 3y + 10 = 0$ … (2) これらの円の共有点の座標を求めます。

座標連立方程式
2025/7/11

直線 $2x - 3y + 18 = 0$ に関して、点 $A(-5, 7)$ と対称な点 $B$ の座標を求める。

座標平面対称点直線連立方程式
2025/7/11

3点(4, -1), (6, 3), (-3, 0) を通る円の方程式を求める。

円の方程式座標平面
2025/7/11

2つの直線の交点の座標を求める問題です。まず、それぞれの直線の方程式を求め、その後、連立方程式を解いて交点の座標を求めます。

直線交点一次関数連立方程式
2025/7/11

点Pは三角形ABCの頂点Aを出発し、秒速2cmで辺AB上を移動する。点PがAを出発してからx秒後の三角形APCの面積をy $cm^2$とするとき、yをxの式で表す問題です。三角形ABCにおいて、AB=...

三角形面積一次関数図形
2025/7/11

問題3は、与えられた直線に対して、点Aと対称な点Bの座標を求める問題です。 問題4は、与えられた中心と半径を持つ円の方程式を求める問題です。

座標平面直線対称点円の方程式
2025/7/11

点Aの座標が(0, 6)、点Bの座標が(11, 4)であるとき、x軸上の点Cを$\angle ACB$が直角となるように定める。このとき、点Cのx座標を求めよ。ただし、線分BCは線分ACより長いものと...

座標平面直角三角形傾き二次方程式
2025/7/11