周期 $2\pi$ の関数 $f(x) = |\sin x|$ ($-\pi \le x < \pi$) のフーリエ級数を求める問題です。解析学フーリエ級数三角関数積分2025/7/91. 問題の内容周期 2π2\pi2π の関数 f(x)=∣sinx∣f(x) = |\sin x|f(x)=∣sinx∣ (−π≤x<π-\pi \le x < \pi−π≤x<π) のフーリエ級数を求める問題です。2. 解き方の手順f(x)f(x)f(x) のフーリエ級数は、次のように表されます。f(x)=a02+∑n=1∞(ancosnx+bnsinnx)f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)f(x)=2a0+∑n=1∞(ancosnx+bnsinnx)ここで、a0a_0a0, ana_nan, bnb_nbn はフーリエ係数であり、それぞれ次のように計算されます。a0=1π∫−ππf(x)dxa_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dxa0=π1∫−ππf(x)dxan=1π∫−ππf(x)cosnxdxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dxan=π1∫−ππf(x)cosnxdxbn=1π∫−ππf(x)sinnxdxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dxbn=π1∫−ππf(x)sinnxdxまず、a0a_0a0 を計算します。a0=1π∫−ππ∣sinx∣dx=2π∫0πsinxdx=2π[−cosx]0π=2π(−cosπ+cos0)=2π(1+1)=4πa_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin x| dx = \frac{2}{\pi} \int_{0}^{\pi} \sin x dx = \frac{2}{\pi} [-\cos x]_0^{\pi} = \frac{2}{\pi} (-\cos \pi + \cos 0) = \frac{2}{\pi} (1 + 1) = \frac{4}{\pi}a0=π1∫−ππ∣sinx∣dx=π2∫0πsinxdx=π2[−cosx]0π=π2(−cosπ+cos0)=π2(1+1)=π4次に、ana_nan を計算します。an=1π∫−ππ∣sinx∣cosnxdx=2π∫0πsinxcosnxdxa_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin x| \cos nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin x \cos nx dxan=π1∫−ππ∣sinx∣cosnxdx=π2∫0πsinxcosnxdx三角関数の積和公式 sinxcosnx=12[sin(x+nx)+sin(x−nx)]=12[sin((n+1)x)−sin((n−1)x)]\sin x \cos nx = \frac{1}{2}[\sin(x+nx) + \sin(x-nx)] = \frac{1}{2}[\sin((n+1)x) - \sin((n-1)x)]sinxcosnx=21[sin(x+nx)+sin(x−nx)]=21[sin((n+1)x)−sin((n−1)x)] を用いると、an=1π∫0π[sin((n+1)x)−sin((n−1)x)]dx=1π[−cos((n+1)x)n+1+cos((n−1)x)n−1]0πa_n = \frac{1}{\pi} \int_{0}^{\pi} [\sin((n+1)x) - \sin((n-1)x)] dx = \frac{1}{\pi} [-\frac{\cos((n+1)x)}{n+1} + \frac{\cos((n-1)x)}{n-1}]_0^{\pi}an=π1∫0π[sin((n+1)x)−sin((n−1)x)]dx=π1[−n+1cos((n+1)x)+n−1cos((n−1)x)]0π (ただし、n≠1n \ne 1n=1)an=1π[−cos((n+1)π)n+1+cos((n−1)π)n−1+1n+1−1n−1]a_n = \frac{1}{\pi} \left[-\frac{\cos((n+1)\pi)}{n+1} + \frac{\cos((n-1)\pi)}{n-1} + \frac{1}{n+1} - \frac{1}{n-1}\right]an=π1[−n+1cos((n+1)π)+n−1cos((n−1)π)+n+11−n−11]cos((n+1)π)=cos((n−1)π)=(−1)n+1\cos((n+1)\pi) = \cos((n-1)\pi) = (-1)^{n+1}cos((n+1)π)=cos((n−1)π)=(−1)n+1 より、an=1π[−(−1)n+1n+1+(−1)n+1n−1+1n+1−1n−1]=1π[1−(−1)n+1n+1−1−(−1)n+1n−1]=1−(−1)n+1π[1n+1−1n−1]a_n = \frac{1}{\pi} \left[ - \frac{(-1)^{n+1}}{n+1} + \frac{(-1)^{n+1}}{n-1} + \frac{1}{n+1} - \frac{1}{n-1}\right] = \frac{1}{\pi} \left[ \frac{1 - (-1)^{n+1}}{n+1} - \frac{1 - (-1)^{n+1}}{n-1} \right] = \frac{1 - (-1)^{n+1}}{\pi} \left[ \frac{1}{n+1} - \frac{1}{n-1}\right]an=π1[−n+1(−1)n+1+n−1(−1)n+1+n+11−n−11]=π1[n+11−(−1)n+1−n−11−(−1)n+1]=π1−(−1)n+1[n+11−n−11]an=1−(−1)n+1πn−1−(n+1)(n+1)(n−1)=1−(−1)n+1π−2n2−1=2((−1)n+1−1)π(n2−1)a_n = \frac{1 - (-1)^{n+1}}{\pi} \frac{n-1 - (n+1)}{(n+1)(n-1)} = \frac{1 - (-1)^{n+1}}{\pi} \frac{-2}{n^2 - 1} = \frac{2( (-1)^{n+1} - 1 )}{\pi (n^2 - 1)}an=π1−(−1)n+1(n+1)(n−1)n−1−(n+1)=π1−(−1)n+1n2−1−2=π(n2−1)2((−1)n+1−1)n=1n=1n=1 のとき、a1=2π∫0πsinxcosxdx=1π∫0πsin2xdx=1π[−12cos2x]0π=1π[−12(1−1)]=0a_1 = \frac{2}{\pi} \int_0^{\pi} \sin x \cos x dx = \frac{1}{\pi} \int_0^{\pi} \sin 2x dx = \frac{1}{\pi} [-\frac{1}{2} \cos 2x]_0^{\pi} = \frac{1}{\pi} [-\frac{1}{2} (1 - 1)] = 0a1=π2∫0πsinxcosxdx=π1∫0πsin2xdx=π1[−21cos2x]0π=π1[−21(1−1)]=0したがって、an=0a_n = 0an=0 (nnn が奇数のとき)an=−4π(n2−1)a_n = -\frac{4}{\pi (n^2 - 1)}an=−π(n2−1)4 (nnn が偶数のとき)次に、bnb_nbn を計算します。bn=1π∫−ππ∣sinx∣sinnxdxb_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin x| \sin nx dxbn=π1∫−ππ∣sinx∣sinnxdx∣sinx∣sinnx|\sin x| \sin nx∣sinx∣sinnx は奇関数なので、bn=0b_n = 0bn=0以上より、フーリエ級数は次のようになります。f(x)=2π+∑n=1∞a2ncos2nx=2π−∑n=1∞4π(4n2−1)cos2nxf(x) = \frac{2}{\pi} + \sum_{n=1}^{\infty} a_{2n} \cos 2nx = \frac{2}{\pi} - \sum_{n=1}^{\infty} \frac{4}{\pi (4n^2 - 1)} \cos 2nxf(x)=π2+∑n=1∞a2ncos2nx=π2−∑n=1∞π(4n2−1)4cos2nxf(x)=2π−4π∑n=1∞14n2−1cos2nxf(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos 2nxf(x)=π2−π4∑n=1∞4n2−11cos2nx3. 最終的な答えf(x)=2π−4π∑n=1∞14n2−1cos2nxf(x) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{4n^2 - 1} \cos 2nxf(x)=π2−π4∑n=1∞4n2−11cos2nx