次の方程式を解きます。 (1) $x^3 - 125 = 0$ (2) $x^4 - 11x^2 + 28 = 0$ (3) $x^3 - 2x^2 + 2x - 1 = 0$代数学方程式三次方程式四次方程式複素数因数分解2025/7/91. 問題の内容次の方程式を解きます。(1) x3−125=0x^3 - 125 = 0x3−125=0(2) x4−11x2+28=0x^4 - 11x^2 + 28 = 0x4−11x2+28=0(3) x3−2x2+2x−1=0x^3 - 2x^2 + 2x - 1 = 0x3−2x2+2x−1=02. 解き方の手順(1) x3−125=0x^3 - 125 = 0x3−125=0x3=125x^3 = 125x3=125x3=53x^3 = 5^3x3=53x=5x = 5x=5 (実数解)複素数解も含める場合、x3−53=0x^3 - 5^3 = 0x3−53=0(x−5)(x2+5x+25)=0(x-5)(x^2 + 5x + 25) = 0(x−5)(x2+5x+25)=0x=5x = 5x=5 または x2+5x+25=0x^2 + 5x + 25 = 0x2+5x+25=0x=−5±52−4⋅1⋅252=−5±25−1002=−5±−752=−5±53i2x = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1 \cdot 25}}{2} = \frac{-5 \pm \sqrt{25 - 100}}{2} = \frac{-5 \pm \sqrt{-75}}{2} = \frac{-5 \pm 5\sqrt{3}i}{2}x=2−5±52−4⋅1⋅25=2−5±25−100=2−5±−75=2−5±53i(2) x4−11x2+28=0x^4 - 11x^2 + 28 = 0x4−11x2+28=0y=x2y = x^2y=x2 とおくと、y2−11y+28=0y^2 - 11y + 28 = 0y2−11y+28=0(y−4)(y−7)=0(y - 4)(y - 7) = 0(y−4)(y−7)=0y=4y = 4y=4 または y=7y = 7y=7x2=4x^2 = 4x2=4 より x=±2x = \pm 2x=±2x2=7x^2 = 7x2=7 より x=±7x = \pm \sqrt{7}x=±7(3) x3−2x2+2x−1=0x^3 - 2x^2 + 2x - 1 = 0x3−2x2+2x−1=0(x−1)(x2−x+1)=0(x-1)(x^2-x+1)=0(x−1)(x2−x+1)=0x=1x = 1x=1 または x2−x+1=0x^2 - x + 1 = 0x2−x+1=0x=1±12−4⋅1⋅12=1±1−42=1±−32=1±3i2x = \frac{1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot 1}}{2} = \frac{1 \pm \sqrt{1 - 4}}{2} = \frac{1 \pm \sqrt{-3}}{2} = \frac{1 \pm \sqrt{3}i}{2}x=21±12−4⋅1⋅1=21±1−4=21±−3=21±3i3. 最終的な答え(1) x=5,−5±53i2x = 5, \frac{-5 \pm 5\sqrt{3}i}{2}x=5,2−5±53i(2) x=±2,±7x = \pm 2, \pm \sqrt{7}x=±2,±7(3) x=1,1±3i2x = 1, \frac{1 \pm \sqrt{3}i}{2}x=1,21±3i