正六角形を6個の正三角形に分割し、各三角形を異なる色で塗り分ける問題です。ただし、回転して一致する塗り方は同じものとみなします。 (1) 6色すべてを使って塗り分ける方法の数を求めます。 (2) 6色のうち、ちょうど5色を使って塗り分ける方法の数を求めます。

離散数学組み合わせ場合の数順列円順列正多角形
2025/7/9

1. 問題の内容

正六角形を6個の正三角形に分割し、各三角形を異なる色で塗り分ける問題です。ただし、回転して一致する塗り方は同じものとみなします。
(1) 6色すべてを使って塗り分ける方法の数を求めます。
(2) 6色のうち、ちょうど5色を使って塗り分ける方法の数を求めます。

2. 解き方の手順

(1) 6色すべてを使う場合
まず、中心の三角形の色を決めます。これは6通りの選び方があります。
次に、残りの5色で周りの5つの三角形を塗ります。円順列の考え方から、(5-1)! = 4! = 24 通りの塗り方があります。
したがって、6色すべてを使う塗り方は 6×24=1446 \times 24 = 144 通りです。
(2) 6色のうち、ちょうど5色を使う場合
まず、使わない1色を選びます。これは6通りの選び方があります。
次に、使う5色の中から中心の三角形の色を選びます。これは5通りの選び方があります。
残りの4色で周りの5つの三角形を塗ります。ここで、5つの三角形のうち2つの三角形が同じ色になります。
2つの同じ色を選ぶ配置を考えます。隣り合う場合と向かい合う場合があります。
i) 隣り合う場合:4色の円順列は (4-1)! = 3! = 6通り。
ii) 向かい合う場合:4色の円順列は 3! = 6通り。
ここで、同じ色が隣り合う場合は、回転によって同じになる塗り方が存在します。例えば、AABBCCCという塗り方は回転によって同じになります。
円順列の場合、(n-1)!で計算できますが、同じ色がある場合は重複が生じます。
したがって、単純に円順列で考えると誤りです。
まず、5色の選び方が (65)=6\binom{6}{5} = 6通りあります。
次に、中心の色を決めます。これは5通りです。
残りの5つの三角形を4色で塗るので、1つの色を2回使う必要があります。
2回使う色を決めます。これは4通りです。
2回使う色が隣り合う場合と向かい合う場合を考えます。
隣り合う場合、残りの3色の並べ方は3! = 6通りです。
向かい合う場合、残りの3色の並べ方は3! = 6通りです。
したがって、塗り方は6×5×4×(6+6)/2=6×5×4×(3!)=6×5×24=7206 \times 5 \times 4 \times (6+6)/2=6 \times 5 \times 4 \times (3!) = 6 \times 5 \times 24 = 720
円順列ではなく直線順列で考えます。5つの三角形に色を並べる方法は 5!2!\frac{5!}{2!}。これは4つの色を並べた後に同じ色を入れる場所を選ぶ方法と同じです。このとき5/2 = 120 /2 = 60なので、
最終的に,6×5×4!2!=6×5×242=6×5×12=3606 \times 5 \times \frac{4!}{2!} = 6\times 5 \times \frac{24}{2} = 6\times 5 \times 12 = 360
最終的には 6×5×12=3606 \times 5 \times 12= 360

3. 最終的な答え

(1) 144通り
(2) 360通り

「離散数学」の関連問題

男子4人と女子4人が手をつないで円を作るとき、次の問いに答えます。 (1) 円の作り方は全部で何通りあるか。 (2) 男子と女子が交互になる円の作り方は何通りあるか。 (3) 男子の太郎君と次郎君が向...

円順列順列組み合わせ場合の数
2025/7/9

図のような道のある町で、AからBまでの最短経路の総数、Qを通る最短経路の総数、PまたはQを通る最短経路の総数をそれぞれ求める問題です。

組み合わせ最短経路順列
2025/7/9

「KAWAGOE」の7文字を1列に並べる場合の数を求める問題です。ただし、Aが2つあるので、同じものを含む順列の考え方を使います。

順列組み合わせ場合の数重複順列
2025/7/9

(1) 集合 $A = \{1, 2, 3, 4, 6, 12\}$ の部分集合を、与えられた集合 $P = \{1, 2, 3, 5\}$, $Q = \{1, 2, 4, 6\}$, $R = \...

集合部分集合補集合共通部分和集合
2025/7/9

与えられた問題は、組み合わせ (combination) に関する計算問題と、正六角形に関する問題です。具体的には、以下の問題があります。 - 問題54: 組み合わせの計算 (6問) - 問題55: ...

組み合わせnCr正六角形組み合わせの計算
2025/7/9

いくつか場合の数を求める問題が掲載されています。 具体的には、組み合わせ(Combination)の計算、ケーキの選び方、コインの表裏の出方、正六角形に関する問題、果物の選び方、男女の選び方、カードの...

組み合わせ場合の数順列二項係数重複組合せ
2025/7/9

全体集合 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ の部分集合 $A = \{1, 2, 3, 4, 5\}$ と $B = \{2, 4, 5, 6, 8\}$ が与え...

集合集合演算補集合共通部分和集合
2025/7/9

(1) A, B, C, D, E, F, G, H, I, J の10文字の中から4文字を選んで並べてできる順列の数を求める。 (2) A, A, A, A, A, B, B, B, B, B の1...

順列組み合わせ場合の数
2025/7/8

この問題は、与えられた文字の集合から4つの文字を選んで並べる順列の数を求める問題です。3つの小問があります。 (1) 10種類の文字 A, B, C, D, E, F, G, H, I, J から4文...

順列組み合わせ場合の数重複順列
2025/7/8

与えられた文字の集合から4つの文字を選び、並べてできる順列の数を求める問題です。3つの異なる文字の集合に対して順列の数を計算します。

順列組み合わせ重複順列場合の数
2025/7/8