次の式を計算します。 $6\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k - \sum_{k=1}^{n} 16$代数学シグマ数列計算数式処理2025/7/91. 問題の内容次の式を計算します。6∑k=1nk2−6∑k=1nk−∑k=1n166\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k - \sum_{k=1}^{n} 166∑k=1nk2−6∑k=1nk−∑k=1n162. 解き方の手順まず、それぞれのシグマを計算します。∑k=1nk2=n(n+1)(2n+1)6\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}∑k=1nk2=6n(n+1)(2n+1)∑k=1nk=n(n+1)2\sum_{k=1}^{n} k = \frac{n(n+1)}{2}∑k=1nk=2n(n+1)∑k=1n16=16n\sum_{k=1}^{n} 16 = 16n∑k=1n16=16nこれらの結果を元の式に代入します。6∑k=1nk2−6∑k=1nk−∑k=1n16=6⋅n(n+1)(2n+1)6−6⋅n(n+1)2−16n6\sum_{k=1}^{n} k^2 - 6\sum_{k=1}^{n} k - \sum_{k=1}^{n} 16 = 6 \cdot \frac{n(n+1)(2n+1)}{6} - 6 \cdot \frac{n(n+1)}{2} - 16n6∑k=1nk2−6∑k=1nk−∑k=1n16=6⋅6n(n+1)(2n+1)−6⋅2n(n+1)−16n=n(n+1)(2n+1)−3n(n+1)−16n= n(n+1)(2n+1) - 3n(n+1) - 16n=n(n+1)(2n+1)−3n(n+1)−16n=n((n+1)(2n+1)−3(n+1)−16)= n( (n+1)(2n+1) - 3(n+1) - 16 )=n((n+1)(2n+1)−3(n+1)−16)=n(2n2+3n+1−3n−3−16)= n( 2n^2 + 3n + 1 - 3n - 3 - 16 )=n(2n2+3n+1−3n−3−16)=n(2n2−18)= n( 2n^2 - 18 )=n(2n2−18)=2n3−18n= 2n^3 - 18n=2n3−18n3. 最終的な答え2n3−18n2n^3 - 18n2n3−18n