3点A(7, -1), B(1, -5), C(4, 3)を頂点とする三角形ABCの重心Gの座標を求める問題です。

幾何学重心座標三角形
2025/7/10

1. 問題の内容

3点A(7, -1), B(1, -5), C(4, 3)を頂点とする三角形ABCの重心Gの座標を求める問題です。

2. 解き方の手順

三角形の重心の座標は、各頂点の座標の平均を取ることで求められます。つまり、重心Gの座標(x_G, y_G)は、以下の式で計算できます。
xG=xA+xB+xC3x_G = \frac{x_A + x_B + x_C}{3}
yG=yA+yB+yC3y_G = \frac{y_A + y_B + y_C}{3}
それぞれの座標に値を代入します。
xG=7+1+43=123=4x_G = \frac{7 + 1 + 4}{3} = \frac{12}{3} = 4
yG=1+(5)+33=33=1y_G = \frac{-1 + (-5) + 3}{3} = \frac{-3}{3} = -1
したがって、重心Gの座標は(4, -1)となります。

3. 最終的な答え

G(4, -1)

「幾何学」の関連問題

図のように円が三角形ABCに内接しています。円と辺AB, BC, CAの接点をそれぞれQ, P, Rとします。AQ=7, AR=10, BP=x, CP=12のとき、xの値を求めます。

三角形内接外心内心正弦定理
2025/7/12

円に内接する四角形と、円の外部の点から引かれた接線に関する問題です。$\angle BFD = 25^\circ$、$\angle ACB = 45^\circ$ が与えられたとき、$\angle A...

円に内接する四角形接線円周角の定理接弦定理角度
2025/7/12

直角三角形ABCがあり、$BC=6cm$、$\angle BCA=90^{\circ}$である。 (1) $AB=11cm$のとき、三角形ABCを直線BCを軸として1回転させてできる立体の体積を求める...

幾何三次元図形体積直角三角形ピタゴラスの定理回転体円錐
2025/7/12

図Aと図Bはそれぞれ直方体の一部が切り取られた立体です。図Aの体積と図Bの体積が等しいとき、図Bの高さ(?mと表記されている部分)を求めなさい。図Aの寸法は、底面の縦が5m、横が8m、高さが4mの直方...

体積直方体三角柱図形
2025/7/12

## 問題の内容

ベクトル外積平行六面体体積空間ベクトル
2025/7/12

三角形OABにおいて、OA=2, OB=3, $\cos\angle AOB = -\frac{1}{6}$である。辺OAの中点をM、辺ABの中点をN、辺ABを2:1に内分する点をCとする。$\ove...

ベクトル内積三角形空間ベクトル
2025/7/12

極方程式 $r = \frac{5}{3 + 2\cos{\theta}}$ で表される曲線Cについて、$\theta = \frac{\pi}{2}$ に対応する点Aと $\theta = \fra...

極座標直交座標曲線三角関数
2025/7/12

極方程式 $r = \frac{1}{3\cos\theta}$ の表す曲線を C とする。$3r = r\cos\theta + \boxed{1}$ より、曲線 C を直交座標 $(x, y)$ ...

極座標直交座標楕円焦点
2025/7/12

三角形ABCにおいて、$AB = 6$, $CA = 5$, 面積が$6\sqrt{6}$である。 (1) $\sin \angle BAC$を求める。 (2) $BC$の長さと$\cos \angl...

三角形面積余弦定理正弦定理外接円垂直二等分線円周角の定理
2025/7/12

座標平面上に4点A(0,0), B(0,1), C(1,1), D(1,0)がある。実数$0 < t < 1$に対して、線分AB, BC, CDを$t: (1-t)$に内分する点をそれぞれ$P_t, ...

座標平面内分点曲線面積曲線の長さ積分
2025/7/12