$x \geq 0$ のとき、以下の不等式が成り立つことを証明します。 (1) $e^{2x} \geq 2x + 1$ (2) $\log(1+x) \geq x - \frac{1}{2}x^2$
2025/7/10
1. 問題の内容
のとき、以下の不等式が成り立つことを証明します。
(1)
(2)
2. 解き方の手順
(1) の証明
とおきます。 で であることを示します。
のとき、 なので、 となります。
したがって、 は で単調増加です。
は で単調増加なので、
したがって、 より、 が成り立ちます。
(2) の証明
とおきます。 で であることを示します。
のとき、 となります。
したがって、 は で単調増加です。
は で単調増加なので、
したがって、 より、 が成り立ちます。
3. 最終的な答え
(1)
(2)