関数 $f(x, y) = \arctan(\frac{y}{x})$ について、二階偏導関数 $f_{xx}(x, y)$, $f_{xy}(x, y)$, $f_{yy}(x, y)$ を求めよ。解析学偏微分二階偏導関数アークタンジェント2025/7/151. 問題の内容関数 f(x,y)=arctan(yx)f(x, y) = \arctan(\frac{y}{x})f(x,y)=arctan(xy) について、二階偏導関数 fxx(x,y)f_{xx}(x, y)fxx(x,y), fxy(x,y)f_{xy}(x, y)fxy(x,y), fyy(x,y)f_{yy}(x, y)fyy(x,y) を求めよ。2. 解き方の手順まず、一階偏導関数を求めます。fx=∂∂xarctan(yx)=11+(yx)2⋅(−yx2)=x2x2+y2⋅(−yx2)=−yx2+y2f_x = \frac{\partial}{\partial x} \arctan(\frac{y}{x}) = \frac{1}{1 + (\frac{y}{x})^2} \cdot (-\frac{y}{x^2}) = \frac{x^2}{x^2 + y^2} \cdot (-\frac{y}{x^2}) = -\frac{y}{x^2 + y^2}fx=∂x∂arctan(xy)=1+(xy)21⋅(−x2y)=x2+y2x2⋅(−x2y)=−x2+y2yfy=∂∂yarctan(yx)=11+(yx)2⋅(1x)=x2x2+y2⋅(1x)=xx2+y2f_y = \frac{\partial}{\partial y} \arctan(\frac{y}{x}) = \frac{1}{1 + (\frac{y}{x})^2} \cdot (\frac{1}{x}) = \frac{x^2}{x^2 + y^2} \cdot (\frac{1}{x}) = \frac{x}{x^2 + y^2}fy=∂y∂arctan(xy)=1+(xy)21⋅(x1)=x2+y2x2⋅(x1)=x2+y2x次に、二階偏導関数を求めます。fxx=∂∂xfx=∂∂x(−yx2+y2)=−y⋅∂∂x(x2+y2)−1=−y⋅(−1)(x2+y2)−2⋅(2x)=2xy(x2+y2)2f_{xx} = \frac{\partial}{\partial x} f_x = \frac{\partial}{\partial x} (-\frac{y}{x^2 + y^2}) = -y \cdot \frac{\partial}{\partial x} (x^2 + y^2)^{-1} = -y \cdot (-1) (x^2 + y^2)^{-2} \cdot (2x) = \frac{2xy}{(x^2 + y^2)^2}fxx=∂x∂fx=∂x∂(−x2+y2y)=−y⋅∂x∂(x2+y2)−1=−y⋅(−1)(x2+y2)−2⋅(2x)=(x2+y2)22xyfxy=∂∂yfx=∂∂y(−yx2+y2)=−1⋅(x2+y2)−y⋅(2y)(x2+y2)2=−x2+y2−2y2(x2+y2)2=−x2−y2(x2+y2)2=y2−x2(x2+y2)2f_{xy} = \frac{\partial}{\partial y} f_x = \frac{\partial}{\partial y} (-\frac{y}{x^2 + y^2}) = -\frac{1 \cdot (x^2 + y^2) - y \cdot (2y)}{(x^2 + y^2)^2} = -\frac{x^2 + y^2 - 2y^2}{(x^2 + y^2)^2} = -\frac{x^2 - y^2}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2}fxy=∂y∂fx=∂y∂(−x2+y2y)=−(x2+y2)21⋅(x2+y2)−y⋅(2y)=−(x2+y2)2x2+y2−2y2=−(x2+y2)2x2−y2=(x2+y2)2y2−x2fyy=∂∂yfy=∂∂y(xx2+y2)=x⋅∂∂y(x2+y2)−1=x⋅(−1)(x2+y2)−2⋅(2y)=−2xy(x2+y2)2f_{yy} = \frac{\partial}{\partial y} f_y = \frac{\partial}{\partial y} (\frac{x}{x^2 + y^2}) = x \cdot \frac{\partial}{\partial y} (x^2 + y^2)^{-1} = x \cdot (-1) (x^2 + y^2)^{-2} \cdot (2y) = -\frac{2xy}{(x^2 + y^2)^2}fyy=∂y∂fy=∂y∂(x2+y2x)=x⋅∂y∂(x2+y2)−1=x⋅(−1)(x2+y2)−2⋅(2y)=−(x2+y2)22xy3. 最終的な答えfxx(x,y)=2xy(x2+y2)2f_{xx}(x, y) = \frac{2xy}{(x^2 + y^2)^2}fxx(x,y)=(x2+y2)22xyfxy(x,y)=y2−x2(x2+y2)2f_{xy}(x, y) = \frac{y^2 - x^2}{(x^2 + y^2)^2}fxy(x,y)=(x2+y2)2y2−x2fyy(x,y)=−2xy(x2+y2)2f_{yy}(x, y) = -\frac{2xy}{(x^2 + y^2)^2}fyy(x,y)=−(x2+y2)22xy