次の定積分の値を計算します。 $\int_{-2}^{0} (-2x^2 - 3x + 2) dx + \int_{0}^{2} (-2x^2 - 3x + 2) dx$解析学定積分積分多項式2025/7/151. 問題の内容次の定積分の値を計算します。∫−20(−2x2−3x+2)dx+∫02(−2x2−3x+2)dx\int_{-2}^{0} (-2x^2 - 3x + 2) dx + \int_{0}^{2} (-2x^2 - 3x + 2) dx∫−20(−2x2−3x+2)dx+∫02(−2x2−3x+2)dx2. 解き方の手順まず、不定積分を計算します。∫(−2x2−3x+2)dx=−23x3−32x2+2x+C\int (-2x^2 - 3x + 2) dx = -\frac{2}{3}x^3 - \frac{3}{2}x^2 + 2x + C∫(−2x2−3x+2)dx=−32x3−23x2+2x+C次に、それぞれの定積分を計算します。∫−20(−2x2−3x+2)dx=[−23x3−32x2+2x]−20\int_{-2}^{0} (-2x^2 - 3x + 2) dx = \left[-\frac{2}{3}x^3 - \frac{3}{2}x^2 + 2x\right]_{-2}^{0}∫−20(−2x2−3x+2)dx=[−32x3−23x2+2x]−20=(0)−(−23(−2)3−32(−2)2+2(−2))= (0) - \left(-\frac{2}{3}(-2)^3 - \frac{3}{2}(-2)^2 + 2(-2)\right)=(0)−(−32(−2)3−23(−2)2+2(−2))=−(−23(−8)−32(4)−4)=−(163−6−4)= - \left(-\frac{2}{3}(-8) - \frac{3}{2}(4) - 4\right) = - \left(\frac{16}{3} - 6 - 4\right)=−(−32(−8)−23(4)−4)=−(316−6−4)=−(163−10)=−(16−303)=−(−143)=143= - \left(\frac{16}{3} - 10\right) = - \left(\frac{16 - 30}{3}\right) = - \left(\frac{-14}{3}\right) = \frac{14}{3}=−(316−10)=−(316−30)=−(3−14)=314∫02(−2x2−3x+2)dx=[−23x3−32x2+2x]02\int_{0}^{2} (-2x^2 - 3x + 2) dx = \left[-\frac{2}{3}x^3 - \frac{3}{2}x^2 + 2x\right]_{0}^{2}∫02(−2x2−3x+2)dx=[−32x3−23x2+2x]02=(−23(2)3−32(2)2+2(2))−(0)= \left(-\frac{2}{3}(2)^3 - \frac{3}{2}(2)^2 + 2(2)\right) - (0)=(−32(2)3−23(2)2+2(2))−(0)=−23(8)−32(4)+4=−163−6+4=−163−2= -\frac{2}{3}(8) - \frac{3}{2}(4) + 4 = -\frac{16}{3} - 6 + 4 = -\frac{16}{3} - 2=−32(8)−23(4)+4=−316−6+4=−316−2=−16−63=−223= \frac{-16 - 6}{3} = -\frac{22}{3}=3−16−6=−322最後に、それぞれの定積分の結果を足し合わせます。143−223=−83\frac{14}{3} - \frac{22}{3} = -\frac{8}{3}314−322=−383. 最終的な答え−83-\frac{8}{3}−38