与えられた問題は、以下の和を計算することです。 $\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$解析学級数部分分数分解シグマ2025/7/101. 問題の内容与えられた問題は、以下の和を計算することです。∑k=1n1k(k+1)(k+2)\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}∑k=1nk(k+1)(k+2)12. 解き方の手順この問題を解くために、部分分数分解を用います。1k(k+1)(k+2)\frac{1}{k(k+1)(k+2)}k(k+1)(k+2)1 を、次のように分解します。1k(k+1)(k+2)=Ak+Bk+1+Ck+2\frac{1}{k(k+1)(k+2)} = \frac{A}{k} + \frac{B}{k+1} + \frac{C}{k+2}k(k+1)(k+2)1=kA+k+1B+k+2C両辺に k(k+1)(k+2)k(k+1)(k+2)k(k+1)(k+2) をかけると、1=A(k+1)(k+2)+B(k)(k+2)+C(k)(k+1)1 = A(k+1)(k+2) + B(k)(k+2) + C(k)(k+1)1=A(k+1)(k+2)+B(k)(k+2)+C(k)(k+1)k=0k = 0k=0 を代入すると、1=A(1)(2)1 = A(1)(2)1=A(1)(2) より A=12A = \frac{1}{2}A=21k=−1k = -1k=−1 を代入すると、1=B(−1)(1)1 = B(-1)(1)1=B(−1)(1) より B=−1B = -1B=−1k=−2k = -2k=−2 を代入すると、1=C(−2)(−1)1 = C(-2)(-1)1=C(−2)(−1) より C=12C = \frac{1}{2}C=21したがって、1k(k+1)(k+2)=12k−1k+1+12(k+2)\frac{1}{k(k+1)(k+2)} = \frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)}k(k+1)(k+2)1=2k1−k+11+2(k+2)1ここで、和を計算します。∑k=1n1k(k+1)(k+2)=∑k=1n(12k−1k+1+12(k+2))\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)} = \sum_{k=1}^{n} \left( \frac{1}{2k} - \frac{1}{k+1} + \frac{1}{2(k+2)} \right)∑k=1nk(k+1)(k+2)1=∑k=1n(2k1−k+11+2(k+2)1)=12∑k=1n1k−∑k=1n1k+1+12∑k=1n1k+2= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k+1} + \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k+2}=21∑k=1nk1−∑k=1nk+11+21∑k=1nk+21=12∑k=1n1k−∑k=2n+11k+12∑k=3n+21k= \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n+1} \frac{1}{k} + \frac{1}{2} \sum_{k=3}^{n+2} \frac{1}{k}=21∑k=1nk1−∑k=2n+1k1+21∑k=3n+2k1=12(1+12+∑k=3n1k)−(12+13+⋯+1n+1n+1)+12(13+14+⋯+1n+1n+1+1n+2)= \frac{1}{2} \left( 1 + \frac{1}{2} + \sum_{k=3}^{n} \frac{1}{k} \right) - \left( \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \frac{1}{n+1} \right) + \frac{1}{2} \left( \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} \right)=21(1+21+∑k=3nk1)−(21+31+⋯+n1+n+11)+21(31+41+⋯+n1+n+11+n+21)=12+14−12−1n+1+12(1n+1+1n+2)= \frac{1}{2} + \frac{1}{4} - \frac{1}{2} - \frac{1}{n+1} + \frac{1}{2} \left( \frac{1}{n+1} + \frac{1}{n+2} \right)=21+41−21−n+11+21(n+11+n+21)=14−1n+1+12(n+1)+12(n+2)= \frac{1}{4} - \frac{1}{n+1} + \frac{1}{2(n+1)} + \frac{1}{2(n+2)}=41−n+11+2(n+1)1+2(n+2)1=14−12(n+1)+12(n+2)= \frac{1}{4} - \frac{1}{2(n+1)} + \frac{1}{2(n+2)}=41−2(n+1)1+2(n+2)1=14−(n+2)−(n+1)2(n+1)(n+2)= \frac{1}{4} - \frac{(n+2) - (n+1)}{2(n+1)(n+2)}=41−2(n+1)(n+2)(n+2)−(n+1)=14−12(n+1)(n+2)= \frac{1}{4} - \frac{1}{2(n+1)(n+2)}=41−2(n+1)(n+2)1=(n+1)(n+2)−24(n+1)(n+2)= \frac{(n+1)(n+2) - 2}{4(n+1)(n+2)}=4(n+1)(n+2)(n+1)(n+2)−2=n2+3n+2−24(n+1)(n+2)= \frac{n^2 + 3n + 2 - 2}{4(n+1)(n+2)}=4(n+1)(n+2)n2+3n+2−2=n(n+3)4(n+1)(n+2)= \frac{n(n+3)}{4(n+1)(n+2)}=4(n+1)(n+2)n(n+3)3. 最終的な答えn(n+3)4(n+1)(n+2)\frac{n(n+3)}{4(n+1)(n+2)}4(n+1)(n+2)n(n+3)