次の関数を微分せよ。 1) $3^x$ 2) $\frac{1}{\sqrt[5]{3x+1}}$ 3) $x^2 e^{-x}$ 4) $\sqrt{x^2+1}$ 5) $\log(x+\sqrt{x^2+1})$解析学微分指数関数対数関数合成関数2025/7/101. 問題の内容次の関数を微分せよ。1) 3x3^x3x2) 13x+15\frac{1}{\sqrt[5]{3x+1}}53x+113) x2e−xx^2 e^{-x}x2e−x4) x2+1\sqrt{x^2+1}x2+15) log(x+x2+1)\log(x+\sqrt{x^2+1})log(x+x2+1)2. 解き方の手順1) 3x3^x3x の微分y=3xy = 3^xy=3xy′=3xlog3y' = 3^x \log 3y′=3xlog32) 13x+15\frac{1}{\sqrt[5]{3x+1}}53x+11 の微分y=13x+15=(3x+1)−15y = \frac{1}{\sqrt[5]{3x+1}} = (3x+1)^{-\frac{1}{5}}y=53x+11=(3x+1)−51y′=−15(3x+1)−65⋅3=−35(3x+1)−65=−35(3x+1)65y' = -\frac{1}{5} (3x+1)^{-\frac{6}{5}} \cdot 3 = -\frac{3}{5} (3x+1)^{-\frac{6}{5}} = -\frac{3}{5\sqrt[5]{(3x+1)^6}}y′=−51(3x+1)−56⋅3=−53(3x+1)−56=−55(3x+1)633) x2e−xx^2 e^{-x}x2e−x の微分y=x2e−xy = x^2 e^{-x}y=x2e−xy′=(x2)′e−x+x2(e−x)′=2xe−x+x2(−e−x)=2xe−x−x2e−x=e−x(2x−x2)y' = (x^2)' e^{-x} + x^2 (e^{-x})' = 2x e^{-x} + x^2 (-e^{-x}) = 2x e^{-x} - x^2 e^{-x} = e^{-x}(2x-x^2)y′=(x2)′e−x+x2(e−x)′=2xe−x+x2(−e−x)=2xe−x−x2e−x=e−x(2x−x2)4) x2+1\sqrt{x^2+1}x2+1 の微分y=x2+1=(x2+1)12y = \sqrt{x^2+1} = (x^2+1)^{\frac{1}{2}}y=x2+1=(x2+1)21y′=12(x2+1)−12⋅(x2+1)′=12(x2+1)−12⋅2x=xx2+1y' = \frac{1}{2} (x^2+1)^{-\frac{1}{2}} \cdot (x^2+1)' = \frac{1}{2} (x^2+1)^{-\frac{1}{2}} \cdot 2x = \frac{x}{\sqrt{x^2+1}}y′=21(x2+1)−21⋅(x2+1)′=21(x2+1)−21⋅2x=x2+1x5) log(x+x2+1)\log(x+\sqrt{x^2+1})log(x+x2+1) の微分y=log(x+x2+1)y = \log(x+\sqrt{x^2+1})y=log(x+x2+1)y′=1x+x2+1⋅(x+x2+1)′=1x+x2+1⋅(1+12(x2+1)−12⋅2x)y' = \frac{1}{x+\sqrt{x^2+1}} \cdot (x+\sqrt{x^2+1})' = \frac{1}{x+\sqrt{x^2+1}} \cdot (1 + \frac{1}{2}(x^2+1)^{-\frac{1}{2}} \cdot 2x)y′=x+x2+11⋅(x+x2+1)′=x+x2+11⋅(1+21(x2+1)−21⋅2x)y′=1x+x2+1⋅(1+xx2+1)=1x+x2+1⋅(x2+1+xx2+1)y' = \frac{1}{x+\sqrt{x^2+1}} \cdot (1 + \frac{x}{\sqrt{x^2+1}}) = \frac{1}{x+\sqrt{x^2+1}} \cdot (\frac{\sqrt{x^2+1}+x}{\sqrt{x^2+1}})y′=x+x2+11⋅(1+x2+1x)=x+x2+11⋅(x2+1x2+1+x)y′=1x2+1y' = \frac{1}{\sqrt{x^2+1}}y′=x2+113. 最終的な答え1) 3xlog33^x \log 33xlog32) −35(3x+1)65-\frac{3}{5\sqrt[5]{(3x+1)^6}}−55(3x+1)633) e−x(2x−x2)e^{-x}(2x-x^2)e−x(2x−x2)4) xx2+1\frac{x}{\sqrt{x^2+1}}x2+1x5) 1x2+1\frac{1}{\sqrt{x^2+1}}x2+11