次の和 $S$ を求める問題です。 (1) $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}$解析学級数等比数列無限級数2025/7/101. 問題の内容次の和 SSS を求める問題です。(1) S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n2. 解き方の手順S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \cdots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n13S=13+232+333+⋯+n−13n−1+n3n\frac{1}{3}S = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \cdots + \frac{n-1}{3^{n-1}} + \frac{n}{3^n}31S=31+322+333+⋯+3n−1n−1+3nnS−13S=1+(23−13)+(332−232)+(433−333)+⋯+(n3n−1−n−13n−1)−n3nS - \frac{1}{3}S = 1 + (\frac{2}{3} - \frac{1}{3}) + (\frac{3}{3^2} - \frac{2}{3^2}) + (\frac{4}{3^3} - \frac{3}{3^3}) + \cdots + (\frac{n}{3^{n-1}} - \frac{n-1}{3^{n-1}}) - \frac{n}{3^n}S−31S=1+(32−31)+(323−322)+(334−333)+⋯+(3n−1n−3n−1n−1)−3nn23S=1+13+132+133+⋯+13n−1−n3n\frac{2}{3}S = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} - \frac{n}{3^n}32S=1+31+321+331+⋯+3n−11−3nn1+13+132+133+⋯+13n−11 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}}1+31+321+331+⋯+3n−11 は初項1、公比 13\frac{1}{3}31 の等比数列の和なので、1+13+132+133+⋯+13n−1=1(1−(13)n)1−13=1−(13)n23=32(1−13n)1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \cdots + \frac{1}{3^{n-1}} = \frac{1(1 - (\frac{1}{3})^n)}{1 - \frac{1}{3}} = \frac{1 - (\frac{1}{3})^n}{\frac{2}{3}} = \frac{3}{2}(1 - \frac{1}{3^n})1+31+321+331+⋯+3n−11=1−311(1−(31)n)=321−(31)n=23(1−3n1)したがって、23S=32(1−13n)−n3n\frac{2}{3}S = \frac{3}{2}(1 - \frac{1}{3^n}) - \frac{n}{3^n}32S=23(1−3n1)−3nn23S=32−32⋅13n−n3n=32−3+2n2⋅3n\frac{2}{3}S = \frac{3}{2} - \frac{3}{2} \cdot \frac{1}{3^n} - \frac{n}{3^n} = \frac{3}{2} - \frac{3 + 2n}{2 \cdot 3^n}32S=23−23⋅3n1−3nn=23−2⋅3n3+2nS=32⋅32−3+2n2⋅3n⋅32=94−3(3+2n)4⋅3nS = \frac{3}{2} \cdot \frac{3}{2} - \frac{3 + 2n}{2 \cdot 3^n} \cdot \frac{3}{2} = \frac{9}{4} - \frac{3(3 + 2n)}{4 \cdot 3^n}S=23⋅23−2⋅3n3+2n⋅23=49−4⋅3n3(3+2n)S=94−9+6n4⋅3n=9⋅3n−9−6n4⋅3nS = \frac{9}{4} - \frac{9 + 6n}{4 \cdot 3^n} = \frac{9 \cdot 3^n - 9 - 6n}{4 \cdot 3^n}S=49−4⋅3n9+6n=4⋅3n9⋅3n−9−6n3. 最終的な答えS=94−6n+94⋅3nS = \frac{9}{4} - \frac{6n+9}{4 \cdot 3^n}S=49−4⋅3n6n+9またはS=9⋅3n−6n−94⋅3nS = \frac{9 \cdot 3^n - 6n - 9}{4 \cdot 3^n}S=4⋅3n9⋅3n−6n−9