次の和 $S$ を求めよ。 $S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}}$解析学級数等比数列和2025/7/101. 問題の内容次の和 SSS を求めよ。S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n2. 解き方の手順まず、与えられた和 SSS を書き出す。S=1+23+332+433+⋯+n3n−1S = 1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}}S=1+32+323+334+⋯+3n−1n次に、両辺に 13\frac{1}{3}31 を掛ける。13S=13+232+333+⋯+n−13n−1+n3n\frac{1}{3}S = \frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n-1}{3^{n-1}} + \frac{n}{3^n}31S=31+322+333+⋯+3n−1n−1+3nn次に、SSS から 13S\frac{1}{3}S31S を引く。S−13S=(1+23+332+433+⋯+n3n−1)−(13+232+333+⋯+n−13n−1+n3n)S - \frac{1}{3}S = (1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \dots + \frac{n}{3^{n-1}}) - (\frac{1}{3} + \frac{2}{3^2} + \frac{3}{3^3} + \dots + \frac{n-1}{3^{n-1}} + \frac{n}{3^n})S−31S=(1+32+323+334+⋯+3n−1n)−(31+322+333+⋯+3n−1n−1+3nn)23S=1+13+132+133+⋯+13n−1−n3n\frac{2}{3}S = 1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^{n-1}} - \frac{n}{3^n}32S=1+31+321+331+⋯+3n−11−3nn23S=∑k=0n−113k−n3n\frac{2}{3}S = \sum_{k=0}^{n-1} \frac{1}{3^k} - \frac{n}{3^n}32S=∑k=0n−13k1−3nn∑k=0n−113k\sum_{k=0}^{n-1} \frac{1}{3^k}∑k=0n−13k1 は初項1、公比 13\frac{1}{3}31 の等比数列の和なので、∑k=0n−113k=1−(13)n1−13=1−13n23=32(1−13n)\sum_{k=0}^{n-1} \frac{1}{3^k} = \frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}} = \frac{1 - \frac{1}{3^n}}{\frac{2}{3}} = \frac{3}{2}(1 - \frac{1}{3^n})∑k=0n−13k1=1−311−(31)n=321−3n1=23(1−3n1)よって、23S=32(1−13n)−n3n\frac{2}{3}S = \frac{3}{2}(1 - \frac{1}{3^n}) - \frac{n}{3^n}32S=23(1−3n1)−3nnS=32⋅32(1−13n)−32⋅n3n=94−94⋅3n−3n2⋅3nS = \frac{3}{2} \cdot \frac{3}{2}(1 - \frac{1}{3^n}) - \frac{3}{2} \cdot \frac{n}{3^n} = \frac{9}{4} - \frac{9}{4 \cdot 3^n} - \frac{3n}{2 \cdot 3^n}S=23⋅23(1−3n1)−23⋅3nn=49−4⋅3n9−2⋅3n3nS=94−94⋅3n−6n4⋅3n=94−9+6n4⋅3nS = \frac{9}{4} - \frac{9}{4 \cdot 3^n} - \frac{6n}{4 \cdot 3^n} = \frac{9}{4} - \frac{9 + 6n}{4 \cdot 3^n}S=49−4⋅3n9−4⋅3n6n=49−4⋅3n9+6nS=94−3(3+2n)4⋅3n=9⋅3n−3(3+2n)4⋅3n=3n+2−9−6n4⋅3nS = \frac{9}{4} - \frac{3(3 + 2n)}{4 \cdot 3^n} = \frac{9 \cdot 3^n - 3(3 + 2n)}{4 \cdot 3^n} = \frac{3^{n+2} - 9 - 6n}{4 \cdot 3^n}S=49−4⋅3n3(3+2n)=4⋅3n9⋅3n−3(3+2n)=4⋅3n3n+2−9−6n3. 最終的な答えS=94−6n+94⋅3n=9⋅3n−6n−94⋅3nS = \frac{9}{4} - \frac{6n + 9}{4 \cdot 3^n} = \frac{9 \cdot 3^n - 6n - 9}{4 \cdot 3^n}S=49−4⋅3n6n+9=4⋅3n9⋅3n−6n−9またはS=3n+2−6n−94⋅3nS = \frac{3^{n+2} - 6n - 9}{4 \cdot 3^n}S=4⋅3n3n+2−6n−9