与えられた10個の対数方程式を解き、$x$の値を求める問題です。代数学対数対数方程式指数2025/7/101. 問題の内容与えられた10個の対数方程式を解き、xxxの値を求める問題です。2. 解き方の手順対数関数の定義 logab=c⇔ac=blog_a b = c \Leftrightarrow a^c = blogab=c⇔ac=b を利用して、各方程式を解きます。(1) log2x=2log_2 x = 2log2x=2x=22=4x = 2^2 = 4x=22=4(2) log5x=−1log_5 x = -1log5x=−1x=5−1=15x = 5^{-1} = \frac{1}{5}x=5−1=51(3) log3x=12log_3 x = \frac{1}{2}log3x=21x=312=3x = 3^{\frac{1}{2}} = \sqrt{3}x=321=3(4) log10x=−12log_{10} x = -\frac{1}{2}log10x=−21x=10−12=110=1010x = 10^{-\frac{1}{2}} = \frac{1}{\sqrt{10}} = \frac{\sqrt{10}}{10}x=10−21=101=1010(5) log14x=2log_{\frac{1}{4}} x = 2log41x=2x=(14)2=116x = (\frac{1}{4})^2 = \frac{1}{16}x=(41)2=161(6) log3(x−1)=2log_3 (x-1) = 2log3(x−1)=2x−1=32=9x - 1 = 3^2 = 9x−1=32=9x=9+1=10x = 9 + 1 = 10x=9+1=10(7) log2(3x−1)=−2log_2 (3x - 1) = -2log2(3x−1)=−23x−1=2−2=143x - 1 = 2^{-2} = \frac{1}{4}3x−1=2−2=413x=14+1=543x = \frac{1}{4} + 1 = \frac{5}{4}3x=41+1=45x=54⋅13=512x = \frac{5}{4} \cdot \frac{1}{3} = \frac{5}{12}x=45⋅31=125(8) log2(2x+5)=12log_2 (2x + 5) = \frac{1}{2}log2(2x+5)=212x+5=212=22x + 5 = 2^{\frac{1}{2}} = \sqrt{2}2x+5=221=22x=2−52x = \sqrt{2} - 52x=2−5x=2−52x = \frac{\sqrt{2} - 5}{2}x=22−5(9) log12(3−2x)=2log_{\frac{1}{2}} (3 - 2x) = 2log21(3−2x)=23−2x=(12)2=143 - 2x = (\frac{1}{2})^2 = \frac{1}{4}3−2x=(21)2=41−2x=14−3=14−124=−114-2x = \frac{1}{4} - 3 = \frac{1}{4} - \frac{12}{4} = -\frac{11}{4}−2x=41−3=41−412=−411x=114⋅12=118x = \frac{11}{4} \cdot \frac{1}{2} = \frac{11}{8}x=411⋅21=811(10) log0.2(2−3x)=−1log_{0.2} (2 - 3x) = -1log0.2(2−3x)=−12−3x=(0.2)−1=(15)−1=52 - 3x = (0.2)^{-1} = (\frac{1}{5})^{-1} = 52−3x=(0.2)−1=(51)−1=5−3x=5−2=3-3x = 5 - 2 = 3−3x=5−2=3x=−1x = -1x=−13. 最終的な答え(1) x=4x = 4x=4(2) x=15x = \frac{1}{5}x=51(3) x=3x = \sqrt{3}x=3(4) x=1010x = \frac{\sqrt{10}}{10}x=1010(5) x=116x = \frac{1}{16}x=161(6) x=10x = 10x=10(7) x=512x = \frac{5}{12}x=125(8) x=2−52x = \frac{\sqrt{2} - 5}{2}x=22−5(9) x=118x = \frac{11}{8}x=811(10) x=−1x = -1x=−1