直角三角形ABCにおいて、直角を挟む2辺AB, BCの長さの和が10cmであるとき、この三角形の面積の最大値を求める。

幾何学三角形面積最大値二次関数最適化
2025/7/10

1. 問題の内容

直角三角形ABCにおいて、直角を挟む2辺AB, BCの長さの和が10cmであるとき、この三角形の面積の最大値を求める。

2. 解き方の手順

ABの長さを xx とすると、BCの長さは 10x10-x と表せる。ただし、x>0x>0 かつ 10x>010-x>0 であるから、0<x<100<x<10である。
三角形の面積を SS とすると、
S=12×x×(10x)S = \frac{1}{2} \times x \times (10-x)
S=12(10xx2)S = \frac{1}{2} (10x - x^2)
S=12(x210x)S = -\frac{1}{2} (x^2 - 10x)
S=12((x5)225)S = -\frac{1}{2} ((x-5)^2 - 25)
S=12(x5)2+252S = -\frac{1}{2} (x-5)^2 + \frac{25}{2}
0<x<100 < x < 10 の範囲で、SS を最大にする xx の値を求める。
S=12(x5)2+252S = -\frac{1}{2} (x-5)^2 + \frac{25}{2} は、x=5x=5 のとき最大値 252\frac{25}{2} をとる。
x=5x=50<x<100 < x < 10 を満たす。

3. 最終的な答え

252 cm2\frac{25}{2} \text{ cm}^2

「幾何学」の関連問題

座標平面上の4点 $A(0,0)$, $B(0,1)$, $C(1,1)$, $D(1,0)$ が与えられています。 実数 $0<t<1$ に対して、線分 $AB$, $BC$, $CD$ を $t:...

座標平面内分点面積曲線の長さ積分
2025/7/11

三角形ABCにおいて、$AB=3, BC=6, CA=5$である。 (1) $\cos{\angle B}$と三角形ABCの面積を求める。 (2) 辺BCの中点をMとし、直線AMと三角形ABCの外接円...

三角形余弦定理ヘロンの公式外接円方べきの定理相似面積
2025/7/11

三角形ABCの重心をGとし、直線AGと辺BCの交点をDとする。このとき、三角形BDGの面積と三角形ABCの面積の比を求める問題です。ただし、問題文には$\frac{\triangle BDGの面積}{...

三角形重心面積比中線相似
2025/7/11

二つの問題があります。 (1) 直線 $l$ は円 $O$ と円 $O'$ の共通接線であるとき、$x$ の値を求めよ。円 $O$ の半径は6, 円 $O'$ の半径は2である。 (2) 直線 $AB...

接線三平方の定理方べきの定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとする。$\angle DAB = 42^\circ$ 、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理
2025/7/11

四角形ABCDは円に内接しており、点Aにおける円の接線を$l$とする。$\angle DAB = 42^\circ$、$\angle ABD = 25^\circ$ のとき、$\angle BCD$ ...

四角形接弦定理円周角の定理
2025/7/11

三角形ABCにおいて、$BC=4$, $CA=5$, $\cos{C} = \frac{\sqrt{3}}{2}$であるとき、三角形ABCの面積を求める。

三角形面積三角比余弦定理
2025/7/11

円に内接する四角形ABCDがあり、点Aにおける円の接線をlとします。$\angle DAB = 42^\circ$、$\angle DBA = 25^\circ$であるとき、$\angle BCD$の...

四角形接弦定理円周角の定理角度
2025/7/11

三角形ABCにおいて、辺BCを3:4に内分する点をP、辺CAを2:3に内分する点をQとする。線分APとBQの交点をRとする。このとき、AR:RPとBR:RQの比を求める。

ベクトル内分三角形
2025/7/11

三角形ABCにおいて、辺BCを3:4に内分する点をP、辺CAを2:3に内分する点をQとする。線分APとBQの交点をRとする。このとき、AR:RPおよびBR:RQを求める。

ベクトル内分点チェバの定理メネラウスの定理
2025/7/11