関数 $y = \sqrt[5]{\frac{x+3}{(x+1)^3}}$ を微分する問題です。対数微分法を使って、$y'$ を求めます。解析学微分対数微分法関数の微分2025/7/111. 問題の内容関数 y=x+3(x+1)35y = \sqrt[5]{\frac{x+3}{(x+1)^3}}y=5(x+1)3x+3 を微分する問題です。対数微分法を使って、y′y'y′ を求めます。2. 解き方の手順まず、両辺の絶対値の自然対数を取ります。log∣y∣=15log∣x+3(x+1)3∣\log |y| = \frac{1}{5} \log \left| \frac{x+3}{(x+1)^3} \right|log∣y∣=51log(x+1)3x+3対数の性質を使って、log∣y∣=15(log∣x+3∣−log∣(x+1)3∣)\log |y| = \frac{1}{5} \left( \log |x+3| - \log |(x+1)^3| \right)log∣y∣=51(log∣x+3∣−log∣(x+1)3∣)log∣y∣=15(log∣x+3∣−3log∣x+1∣)\log |y| = \frac{1}{5} \left( \log |x+3| - 3\log |x+1| \right)log∣y∣=51(log∣x+3∣−3log∣x+1∣)次に、両辺を xxx で微分します。y′y=15(1x+3−3x+1)\frac{y'}{y} = \frac{1}{5} \left( \frac{1}{x+3} - \frac{3}{x+1} \right)yy′=51(x+31−x+13)y′y=15(x+1−3(x+3)(x+3)(x+1))\frac{y'}{y} = \frac{1}{5} \left( \frac{x+1 - 3(x+3)}{(x+3)(x+1)} \right)yy′=51((x+3)(x+1)x+1−3(x+3))y′y=15(x+1−3x−9(x+3)(x+1))\frac{y'}{y} = \frac{1}{5} \left( \frac{x+1 - 3x - 9}{(x+3)(x+1)} \right)yy′=51((x+3)(x+1)x+1−3x−9)y′y=15(−2x−8(x+3)(x+1))\frac{y'}{y} = \frac{1}{5} \left( \frac{-2x-8}{(x+3)(x+1)} \right)yy′=51((x+3)(x+1)−2x−8)y′y=−2(x+4)5(x+3)(x+1)\frac{y'}{y} = \frac{-2(x+4)}{5(x+3)(x+1)}yy′=5(x+3)(x+1)−2(x+4)したがって、y′=−2(x+4)5(x+3)(x+1)⋅y=−2(x+4)5(x+3)(x+1)⋅x+3(x+1)35y' = \frac{-2(x+4)}{5(x+3)(x+1)} \cdot y = \frac{-2(x+4)}{5(x+3)(x+1)} \cdot \sqrt[5]{\frac{x+3}{(x+1)^3}}y′=5(x+3)(x+1)−2(x+4)⋅y=5(x+3)(x+1)−2(x+4)⋅5(x+1)3x+3y′=−2(x+4)5(x+1)(x+3)⋅(x+3)1/5(x+1)3/5y' = \frac{-2(x+4)}{5(x+1)(x+3)} \cdot \frac{(x+3)^{1/5}}{(x+1)^{3/5}}y′=5(x+1)(x+3)−2(x+4)⋅(x+1)3/5(x+3)1/5y′=−2(x+4)5(x+1)(x+3)⋅(x+3)1/5(x+1)3/5y' = \frac{-2(x+4)}{5(x+1)(x+3)} \cdot \frac{(x+3)^{1/5}}{(x+1)^{3/5}}y′=5(x+1)(x+3)−2(x+4)⋅(x+1)3/5(x+3)1/5y′=−2(x+4)5(x+1)8/5(x+3)4/5y' = \frac{-2(x+4)}{5(x+1)^{8/5}(x+3)^{4/5}}y′=5(x+1)8/5(x+3)4/5−2(x+4)y′=−2(x+4)5(x+1)(x+3)x+3(x+1)35y' = \frac{-2(x+4)}{5(x+1) (x+3)} \sqrt[5]{\frac{x+3}{(x+1)^3}}y′=5(x+1)(x+3)−2(x+4)5(x+1)3x+3y′=−2(x+4)5(x+1)8/5(x+3)4/5y' = \frac{-2(x+4)}{5(x+1)^{8/5} (x+3)^{4/5}} y′=5(x+1)8/5(x+3)4/5−2(x+4)y′=−2(x+4)5(x+1)(x+1)3(x+3)45y' = \frac{-2(x+4)}{5(x+1)\sqrt[5]{(x+1)^3 (x+3)^4}}y′=5(x+1)5(x+1)3(x+3)4−2(x+4)3. 最終的な答えlog∣y∣=15(log∣x+3∣−3log∣x+1∣)\log|y| = \frac{1}{5}(\log|x+3| - 3\log|x+1|)log∣y∣=51(log∣x+3∣−3log∣x+1∣)y′y=15(1x+3−3x+1)=−2(x+4)5(x+1)(x+3)\frac{y'}{y} = \frac{1}{5}(\frac{1}{x+3} - \frac{3}{x+1}) = -\frac{2(x+4)}{5(x+1)(x+3)}yy′=51(x+31−x+13)=−5(x+1)(x+3)2(x+4)y′=−2(x+4)5(x+1)(x+3)x+3(x+1)35=−2(x+4)5(x+1)85(x+3)45y' = -\frac{2(x+4)}{5(x+1)(x+3)} \sqrt[5]{\frac{x+3}{(x+1)^3}} = -\frac{2(x+4)}{5(x+1)^{\frac{8}{5}}(x+3)^{\frac{4}{5}}}y′=−5(x+1)(x+3)2(x+4)5(x+1)3x+3=−5(x+1)58(x+3)542(x+4)y′=−2(x+4)5(x+1)(x+1)3(x+3)45y' = -\frac{2(x+4)}{5(x+1)\sqrt[5]{(x+1)^3 (x+3)^4}}y′=−5(x+1)5(x+1)3(x+3)42(x+4)ア = x+3イ = 3ウ = x+1エ = 2オ = 4カ = 5キ = 1ク = 3ケ = 1コ = 3したがって、y′=−2(x+4)5(x+1)(x+1)3(x+3)45y' = -\frac{2(x+4)}{5(x+1)\sqrt[5]{(x+1)^3(x+3)^4}}y′=−5(x+1)5(x+1)3(x+3)42(x+4)答え: y′=−2(x+4)5(x+1)(x+1)3(x+3)45y' = -\frac{2(x+4)}{5(x+1)\sqrt[5]{(x+1)^3 (x+3)^4}}y′=−5(x+1)5(x+1)3(x+3)42(x+4)