$\int \sin(\log x) dx$ を計算します。解析学積分部分積分対数関数三角関数2025/7/111. 問題の内容∫sin(logx)dx\int \sin(\log x) dx∫sin(logx)dx を計算します。2. 解き方の手順まず、部分積分を2回適用します。u=sin(logx)u = \sin(\log x)u=sin(logx) と dv=dxdv = dxdv=dx とおくと、du=cos(logx)xdxdu = \frac{\cos(\log x)}{x} dxdu=xcos(logx)dx と v=xv = xv=x となります。したがって、∫sin(logx)dx=xsin(logx)−∫xcos(logx)xdx=xsin(logx)−∫cos(logx)dx\int \sin(\log x) dx = x \sin(\log x) - \int x \frac{\cos(\log x)}{x} dx = x \sin(\log x) - \int \cos(\log x) dx∫sin(logx)dx=xsin(logx)−∫xxcos(logx)dx=xsin(logx)−∫cos(logx)dx次に、∫cos(logx)dx\int \cos(\log x) dx∫cos(logx)dx を計算します。u=cos(logx)u = \cos(\log x)u=cos(logx) と dv=dxdv = dxdv=dx とおくと、du=−sin(logx)xdxdu = -\frac{\sin(\log x)}{x} dxdu=−xsin(logx)dx と v=xv = xv=x となります。したがって、∫cos(logx)dx=xcos(logx)−∫x(−sin(logx)x)dx=xcos(logx)+∫sin(logx)dx\int \cos(\log x) dx = x \cos(\log x) - \int x \left(-\frac{\sin(\log x)}{x}\right) dx = x \cos(\log x) + \int \sin(\log x) dx∫cos(logx)dx=xcos(logx)−∫x(−xsin(logx))dx=xcos(logx)+∫sin(logx)dxこれを最初の式に代入すると、∫sin(logx)dx=xsin(logx)−(xcos(logx)+∫sin(logx)dx)=xsin(logx)−xcos(logx)−∫sin(logx)dx\int \sin(\log x) dx = x \sin(\log x) - \left(x \cos(\log x) + \int \sin(\log x) dx\right) = x \sin(\log x) - x \cos(\log x) - \int \sin(\log x) dx∫sin(logx)dx=xsin(logx)−(xcos(logx)+∫sin(logx)dx)=xsin(logx)−xcos(logx)−∫sin(logx)dx∫sin(logx)dx\int \sin(\log x) dx∫sin(logx)dx を左辺に移項すると、2∫sin(logx)dx=xsin(logx)−xcos(logx)2 \int \sin(\log x) dx = x \sin(\log x) - x \cos(\log x)2∫sin(logx)dx=xsin(logx)−xcos(logx)したがって、∫sin(logx)dx=12xsin(logx)−12xcos(logx)+C\int \sin(\log x) dx = \frac{1}{2} x \sin(\log x) - \frac{1}{2} x \cos(\log x) + C∫sin(logx)dx=21xsin(logx)−21xcos(logx)+C3. 最終的な答え12x(sin(logx)−cos(logx))+C\frac{1}{2}x(\sin(\log x) - \cos(\log x)) + C21x(sin(logx)−cos(logx))+C