与えられた式 $t^2 = 1 - 2\sin{x}\cos{x}$ を、三角関数の公式を使って簡略化する問題です。

代数学三角関数倍角の公式三角関数の恒等式数式の簡略化
2025/7/11

1. 問題の内容

与えられた式 t2=12sinxcosxt^2 = 1 - 2\sin{x}\cos{x} を、三角関数の公式を使って簡略化する問題です。

2. 解き方の手順

まず、三角関数の倍角の公式を思い出します。
2sinxcosx=sin2x2\sin{x}\cos{x} = \sin{2x} です。
次に、三角関数の基本的な恒等式 sin2x+cos2x=1\sin^2{x} + \cos^2{x} = 1 を思い出します。
与えられた式に上記の倍角の公式を適用すると、
t2=1sin2xt^2 = 1 - \sin{2x}
となります。

3. 最終的な答え

t2=1sin2xt^2 = 1 - \sin{2x}

「代数学」の関連問題

与えられた問題は2つの部分から構成されています。 (1) $1001^2 - 999^2$ の計算結果と、$1001^2 + 1001 \times 999 + 999^2$ の計算結果を求める問題で...

因数分解集合二次方程式代数
2025/7/12

関数 $y = 3x - 2$ の $-3 \le x < 2$ における以下の問いに答える。 (1) 関数のグラフを選択する。 (2) 値域を求める。 (3) 最大値、最小値を求める。

一次関数グラフ定義域値域最大値最小値
2025/7/12

関数 $y = x^2 - 8x + 7$ の $0 \le x \le a$ における最大値を $M$、最小値を $m$ とするとき、$M + m = 7$ となる $a$ の値を求めよ。

二次関数最大値最小値場合分け放物線
2025/7/12

校舎の壁に沿って長方形の資材置き場を作る。フェンスの長さは40mで、校舎の壁にはフェンスは不要。資材置き場の面積を $y$ 平方メートル、校舎の壁と垂直な辺の長さを $x$ メートルとする。 (1) ...

二次関数最大値面積平方完成
2025/7/12

(1) 整式 $A = 2x^2 + 7xy + 6y^2 + 3x + 7y - 5$ が与えられている。$6y^2 + 7y - 5$ を因数分解し、$A$ を因数分解する。 (2) 実数 $x$...

因数分解不等式必要条件と十分条件絶対値
2025/7/12

数列 $\{a_n\}$ は等差数列であり、$a_2 = 10$、$a_5 = 22$ である。 (1) 数列 $\{a_n\}$ の一般項を求めよ。 (2) 数列 $\{a_n\}$ を、1個、2個...

数列等差数列一般項群数列
2025/7/12

数列$\{a_n\}$は等比数列であり、$a_2 = 4$, $a_3 = 16$である。数列$\{b_n\}$は$b_1 = b$ (定数), $b_{n+1} = b_n + a_n$ ($n=1...

数列等比数列級数不等式
2025/7/12

等比数列 $\{a_n\}$ があり、$a_2 = 4, a_3 = 16$ である。数列 $\{b_n\}$ は $b_1 = b$ (b は定数), $b_{n+1} = b_n + a_n$ (...

数列等比数列漸化式級数不等式
2025/7/12

与えられた2つの式を展開して簡単にします。 (1) $4a^2b^2(a^3 - 6ab)$ (2) $(a^2 - ab - 3b^2)ab^3$

式の展開多項式
2025/7/12

直線 $g: y = ax + 9 - 3a$ について、以下の問いに答えます。 (2) $a$ がすべての実数値をとるとき、$g$ と $x$軸の交点を $(p, 0)$ とします。このとき、$p$...

直線方程式座標交点
2025/7/12