関数 $f(x,y) = \sin^{-1}(\frac{y}{x})$ の全微分を求めよ。解析学多変数関数偏微分全微分2025/7/111. 問題の内容関数 f(x,y)=sin−1(yx)f(x,y) = \sin^{-1}(\frac{y}{x})f(x,y)=sin−1(xy) の全微分を求めよ。2. 解き方の手順全微分は以下の式で与えられます。df=∂f∂xdx+∂f∂ydydf = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dydf=∂x∂fdx+∂y∂fdyまず、∂f∂x\frac{\partial f}{\partial x}∂x∂f を計算します。∂f∂x=∂∂xsin−1(yx)=11−(yx)2⋅∂∂x(yx)=11−y2x2⋅(−yx2)=1x2−y2x2⋅(−yx2)=∣x∣x2−y2⋅(−yx2)\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \sin^{-1}(\frac{y}{x}) = \frac{1}{\sqrt{1 - (\frac{y}{x})^2}} \cdot \frac{\partial}{\partial x} (\frac{y}{x}) = \frac{1}{\sqrt{1 - \frac{y^2}{x^2}}} \cdot (-\frac{y}{x^2}) = \frac{1}{\sqrt{\frac{x^2-y^2}{x^2}}} \cdot (-\frac{y}{x^2}) = \frac{|x|}{\sqrt{x^2-y^2}} \cdot (-\frac{y}{x^2})∂x∂f=∂x∂sin−1(xy)=1−(xy)21⋅∂x∂(xy)=1−x2y21⋅(−x2y)=x2x2−y21⋅(−x2y)=x2−y2∣x∣⋅(−x2y)x>0x > 0x>0 の場合、∂f∂x=xx2−y2⋅(−yx2)=−yxx2−y2\frac{\partial f}{\partial x} = \frac{x}{\sqrt{x^2-y^2}} \cdot (-\frac{y}{x^2}) = -\frac{y}{x\sqrt{x^2-y^2}}∂x∂f=x2−y2x⋅(−x2y)=−xx2−y2y次に、∂f∂y\frac{\partial f}{\partial y}∂y∂f を計算します。∂f∂y=∂∂ysin−1(yx)=11−(yx)2⋅∂∂y(yx)=11−y2x2⋅(1x)=∣x∣x2−y2⋅1x\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} \sin^{-1}(\frac{y}{x}) = \frac{1}{\sqrt{1 - (\frac{y}{x})^2}} \cdot \frac{\partial}{\partial y} (\frac{y}{x}) = \frac{1}{\sqrt{1 - \frac{y^2}{x^2}}} \cdot (\frac{1}{x}) = \frac{|x|}{\sqrt{x^2-y^2}} \cdot \frac{1}{x}∂y∂f=∂y∂sin−1(xy)=1−(xy)21⋅∂y∂(xy)=1−x2y21⋅(x1)=x2−y2∣x∣⋅x1x>0x > 0x>0 の場合、∂f∂y=xx2−y2⋅1x=1x2−y2\frac{\partial f}{\partial y} = \frac{x}{\sqrt{x^2-y^2}} \cdot \frac{1}{x} = \frac{1}{\sqrt{x^2-y^2}}∂y∂f=x2−y2x⋅x1=x2−y21したがって、全微分はdf=−yxx2−y2dx+1x2−y2dy=−ydx+xdyxx2−y2df = -\frac{y}{x\sqrt{x^2-y^2}}dx + \frac{1}{\sqrt{x^2-y^2}}dy = \frac{-ydx + xdy}{x\sqrt{x^2-y^2}}df=−xx2−y2ydx+x2−y21dy=xx2−y2−ydx+xdy3. 最終的な答えdf=−ydx+xdyxx2−y2df = \frac{-ydx + xdy}{x\sqrt{x^2-y^2}}df=xx2−y2−ydx+xdy