$\int_{0}^{\frac{\pi}{3}} x \sin(x - \frac{\pi}{3}) dx$ を計算します。解析学積分三角関数部分積分2025/7/111. 問題の内容∫0π3xsin(x−π3)dx\int_{0}^{\frac{\pi}{3}} x \sin(x - \frac{\pi}{3}) dx∫03πxsin(x−3π)dx を計算します。2. 解き方の手順まず、三角関数の加法定理を用いて sin(x−π3)\sin(x - \frac{\pi}{3})sin(x−3π) を展開します。sin(x−π3)=sin(x)cos(π3)−cos(x)sin(π3)=12sin(x)−32cos(x)\sin(x - \frac{\pi}{3}) = \sin(x) \cos(\frac{\pi}{3}) - \cos(x) \sin(\frac{\pi}{3}) = \frac{1}{2} \sin(x) - \frac{\sqrt{3}}{2} \cos(x)sin(x−3π)=sin(x)cos(3π)−cos(x)sin(3π)=21sin(x)−23cos(x)したがって、積分は次のようになります。∫0π3xsin(x−π3)dx=∫0π3x(12sin(x)−32cos(x))dx=12∫0π3xsin(x)dx−32∫0π3xcos(x)dx\int_{0}^{\frac{\pi}{3}} x \sin(x - \frac{\pi}{3}) dx = \int_{0}^{\frac{\pi}{3}} x (\frac{1}{2} \sin(x) - \frac{\sqrt{3}}{2} \cos(x)) dx = \frac{1}{2} \int_{0}^{\frac{\pi}{3}} x \sin(x) dx - \frac{\sqrt{3}}{2} \int_{0}^{\frac{\pi}{3}} x \cos(x) dx∫03πxsin(x−3π)dx=∫03πx(21sin(x)−23cos(x))dx=21∫03πxsin(x)dx−23∫03πxcos(x)dx部分積分を用いてそれぞれの積分を計算します。∫xsin(x)dx\int x \sin(x) dx∫xsin(x)dx:u=xu = xu=x, dv=sin(x)dxdv = \sin(x) dxdv=sin(x)dxdu=dxdu = dxdu=dx, v=−cos(x)v = -\cos(x)v=−cos(x)∫xsin(x)dx=−xcos(x)−∫−cos(x)dx=−xcos(x)+sin(x)+C\int x \sin(x) dx = -x \cos(x) - \int -\cos(x) dx = -x \cos(x) + \sin(x) + C∫xsin(x)dx=−xcos(x)−∫−cos(x)dx=−xcos(x)+sin(x)+C∫xcos(x)dx\int x \cos(x) dx∫xcos(x)dx:u=xu = xu=x, dv=cos(x)dxdv = \cos(x) dxdv=cos(x)dxdu=dxdu = dxdu=dx, v=sin(x)v = \sin(x)v=sin(x)∫xcos(x)dx=xsin(x)−∫sin(x)dx=xsin(x)+cos(x)+C\int x \cos(x) dx = x \sin(x) - \int \sin(x) dx = x \sin(x) + \cos(x) + C∫xcos(x)dx=xsin(x)−∫sin(x)dx=xsin(x)+cos(x)+Cしたがって、12∫0π3xsin(x)dx=12[−xcos(x)+sin(x)]0π3=12[−π3cos(π3)+sin(π3)−(0)]=12[−π3(12)+32]=−π12+34\frac{1}{2} \int_{0}^{\frac{\pi}{3}} x \sin(x) dx = \frac{1}{2} [-x \cos(x) + \sin(x)]_{0}^{\frac{\pi}{3}} = \frac{1}{2} [-\frac{\pi}{3} \cos(\frac{\pi}{3}) + \sin(\frac{\pi}{3}) - (0)] = \frac{1}{2} [-\frac{\pi}{3} (\frac{1}{2}) + \frac{\sqrt{3}}{2}] = -\frac{\pi}{12} + \frac{\sqrt{3}}{4}21∫03πxsin(x)dx=21[−xcos(x)+sin(x)]03π=21[−3πcos(3π)+sin(3π)−(0)]=21[−3π(21)+23]=−12π+4332∫0π3xcos(x)dx=32[xsin(x)+cos(x)]0π3=32[π3sin(π3)+cos(π3)−(0+1)]=32[π3(32)+12−1]=32[π36−12]=π4−34\frac{\sqrt{3}}{2} \int_{0}^{\frac{\pi}{3}} x \cos(x) dx = \frac{\sqrt{3}}{2} [x \sin(x) + \cos(x)]_{0}^{\frac{\pi}{3}} = \frac{\sqrt{3}}{2} [\frac{\pi}{3} \sin(\frac{\pi}{3}) + \cos(\frac{\pi}{3}) - (0 + 1)] = \frac{\sqrt{3}}{2} [\frac{\pi}{3} (\frac{\sqrt{3}}{2}) + \frac{1}{2} - 1] = \frac{\sqrt{3}}{2} [\frac{\pi \sqrt{3}}{6} - \frac{1}{2}] = \frac{\pi}{4} - \frac{\sqrt{3}}{4}23∫03πxcos(x)dx=23[xsin(x)+cos(x)]03π=23[3πsin(3π)+cos(3π)−(0+1)]=23[3π(23)+21−1]=23[6π3−21]=4π−43∫0π3xsin(x−π3)dx=(−π12+34)−(π4−34)=−π12−3π12+34+34=−4π12+234=−π3+32\int_{0}^{\frac{\pi}{3}} x \sin(x - \frac{\pi}{3}) dx = (-\frac{\pi}{12} + \frac{\sqrt{3}}{4}) - (\frac{\pi}{4} - \frac{\sqrt{3}}{4}) = -\frac{\pi}{12} - \frac{3\pi}{12} + \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = -\frac{4\pi}{12} + \frac{2\sqrt{3}}{4} = -\frac{\pi}{3} + \frac{\sqrt{3}}{2}∫03πxsin(x−3π)dx=(−12π+43)−(4π−43)=−12π−123π+43+43=−124π+423=−3π+233. 最終的な答え−π3+32-\frac{\pi}{3} + \frac{\sqrt{3}}{2}−3π+23